Suppr超能文献

从蛋白质晶体中的水了解生物分子溶剂化作用。

Learning about Biomolecular Solvation from Water in Protein Crystals.

机构信息

Department of Physics , University of California , Berkeley , California 94720 , United States.

Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.

出版信息

J Phys Chem B. 2018 Mar 8;122(9):2475-2486. doi: 10.1021/acs.jpcb.7b09898. Epub 2018 Feb 21.

Abstract

Water occupies typically 50% of a protein crystal and thus significantly contributes to the diffraction signal in crystallography experiments. Separating its contribution from that of the protein is, however, challenging because most water molecules are not localized and are thus difficult to assign to specific density peaks. The intricateness of the protein-water interface compounds this difficulty. This information has, therefore, not often been used to study biomolecular solvation. Here, we develop a methodology to surmount in part this difficulty. More specifically, we compare the solvent structure obtained from diffraction data for which experimental phasing is available to that obtained from constrained molecular dynamics (MD) simulations. The resulting spatial density maps show that commonly used MD water models are only partially successful at reproducing the structural features of biomolecular solvation. The radial distribution of water is captured with only slightly higher accuracy than its angular distribution, and only a fraction of the water molecules assigned with high reliability to the crystal structure is recovered. These differences are likely due to shortcomings of both the water models and the protein force fields. Despite these limitations, we manage to infer protonation states of some of the side chains utilizing MD-derived densities.

摘要

水通常占据蛋白质晶体的 50%,因此在晶体学实验中对衍射信号有显著贡献。然而,将其与蛋白质的贡献分离具有挑战性,因为大多数水分子没有定位,因此难以分配到特定的密度峰。蛋白质-水界面的复杂性增加了这种困难。因此,这些信息通常不用于研究生物分子溶剂化。在这里,我们开发了一种方法来部分克服这一困难。更具体地说,我们比较了有实验相的衍射数据获得的溶剂结构和受约束分子动力学 (MD) 模拟获得的溶剂结构。得到的空间密度图表明,常用的 MD 水模型在复制生物分子溶剂化的结构特征方面仅部分成功。水分子的径向分布的捕捉精度仅略高于其角分布,并且只有一部分被高度可靠地分配到晶体结构的水分子被回收。这些差异可能是由于水模型和蛋白质力场的缺陷造成的。尽管存在这些限制,我们仍设法利用 MD 衍生的密度推断一些侧链的质子化状态。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验