Suppr超能文献

使用具有简单一维“迎风”方案的近太阳条件大集合进行概率性太阳风预测。

Probabilistic Solar Wind Forecasting Using Large Ensembles of Near-Sun Conditions With a Simple One-Dimensional "Upwind" Scheme.

作者信息

Owens Mathew J, Riley Pete

机构信息

Space and Atmospheric Electricity Group, Department of Meteorology University of Reading Reading UK.

Predictive Science Inc San Diego CA USA.

出版信息

Space Weather. 2017 Nov;15(11):1461-1474. doi: 10.1002/2017SW001679. Epub 2017 Nov 6.

Abstract

Long lead-time space-weather forecasting requires accurate prediction of the near-Earth solar wind. The current state of the art uses a coronal model to extrapolate the observed photospheric magnetic field to the upper corona, where it is related to solar wind speed through empirical relations. These near-Sun solar wind and magnetic field conditions provide the inner boundary condition to three-dimensional numerical magnetohydrodynamic (MHD) models of the heliosphere out to 1 AU. This physics-based approach can capture dynamic processes within the solar wind, which affect the resulting conditions in near-Earth space. However, this deterministic approach lacks a quantification of forecast uncertainty. Here we describe a complementary method to exploit the near-Sun solar wind information produced by coronal models and provide a quantitative estimate of forecast uncertainty. By sampling the near-Sun solar wind speed at a range of latitudes about the sub-Earth point, we produce a large ensemble (N = 576) of time series at the base of the Sun-Earth line. Propagating these conditions to Earth by a three-dimensional MHD model would be computationally prohibitive; thus, a computationally efficient one-dimensional "upwind" scheme is used. The variance in the resulting near-Earth solar wind speed ensemble is shown to provide an accurate measure of the forecast uncertainty. Applying this technique over 1996-2016, the upwind ensemble is found to provide a more "actionable" forecast than a single deterministic forecast; potential economic value is increased for all operational scenarios, but particularly when false alarms are important (i.e., where the cost of taking mitigating action is relatively large).

摘要

长期的空间天气预报需要准确预测近地太阳风。目前的先进方法是使用日冕模型将观测到的光球磁场外推到日冕上层,在那里通过经验关系将其与太阳风速度联系起来。这些近太阳的太阳风和磁场条件为日球层三维数值磁流体动力学(MHD)模型提供了内边界条件,该模型可延伸至1天文单位。这种基于物理的方法能够捕捉太阳风内部的动态过程,这些过程会影响近地空间的最终状况。然而,这种确定性方法缺乏对预测不确定性的量化。在此,我们描述一种补充方法,利用日冕模型产生的近太阳太阳风信息,并提供预测不确定性的定量估计。通过在地球下方点周围的一系列纬度上对近太阳太阳风速度进行采样,我们在日地连线底部生成了一个大型集合(N = 576)的时间序列。通过三维MHD模型将这些条件传播到地球在计算上是不可行的;因此,使用了一种计算效率高的一维“迎风”方案。结果表明,由此产生的近地太阳风速度集合的方差能准确衡量预测不确定性。在1996 - 2016年期间应用该技术,发现迎风集合比单一确定性预测提供了更“可行”的预测;对于所有运营场景,潜在经济价值都有所增加,尤其是在误报很重要的情况下(即采取缓解行动的成本相对较大的情况)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b45/5784391/04907c0211e9/SWE-15-1461-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验