Dubos Thomas
Laboratoire de Météorologie Dynamique/IPSL, École Polytechnique, 91120 Palaiseau, France.
Phys Rev Lett. 2018 Jan 19;120(3):034501. doi: 10.1103/PhysRevLett.120.034501.
Geophysical models approximate classical fluid motion in rotating frames. Even accurate approximations can have profound consequences, such as the loss of inertial frames. If geophysical fluid dynamics are not strictly equivalent to Newtonian hydrodynamics observed in a rotating frame, what kind of dynamics are they? We aim to clarify fundamental similarities and differences between relativistic, Newtonian, and geophysical hydrodynamics, using variational and covariant formulations as tools to shed the necessary light. A space-time variational principle for the motion of a perfect fluid is introduced. The geophysical action is interpreted as a synchronous limit of the relativistic action. The relativistic Levi-Civita connection also has a finite synchronous limit, which provides a connection with which to endow geophysical space-time, generalizing Cartan (1923). A covariant mass-momentum budget is obtained using covariance of the action and metric-preserving properties of the connection. Ultimately, geophysical models are found to differ from the standard compressible Euler model only by a specific choice of a metric-Coriolis-geopotential tensor akin to the relativistic space-time metric. Once this choice is made, the same covariant mass-momentum budget applies to Newtonian and all geophysical hydrodynamics, including those models lacking an inertial frame. Hence, it is argued that this mass-momentum budget provides an appropriate, common fundamental principle of dynamics. The postulate that Euclidean, inertial frames exist can then be regarded as part of the Newtonian theory of gravitation, which some models of geophysical hydrodynamics slightly violate.
地球物理模型近似于旋转参考系中的经典流体运动。即使是精确的近似也可能产生深远的影响,比如惯性参考系的丧失。如果地球物理流体动力学与在旋转参考系中观察到的牛顿流体动力学并不严格等效,那么它们是什么样的动力学呢?我们旨在阐明相对论性、牛顿和地球物理流体动力学之间的基本异同,使用变分和协变公式作为工具来提供必要的启示。引入了理想流体运动的时空变分原理。地球物理作用被解释为相对论作用的同步极限。相对论性的列维 - 奇维塔联络也有一个有限的同步极限,这提供了一种联络来赋予地球物理时空,推广了嘉当(1923年)的理论。利用作用量的协变性和联络的保度规性质得到了一个协变的质量 - 动量收支。最终发现,地球物理模型与标准的可压缩欧拉模型的区别仅在于对类似于相对论时空度规的度规 - 科里奥利 - 重力位张量的特定选择。一旦做出这种选择,相同的协变质量 - 动量收支适用于牛顿和所有地球物理流体动力学,包括那些缺乏惯性参考系的模型。因此,可以认为这种质量 - 动量收支提供了一个合适的、共同的动力学基本原理。欧几里得惯性参考系存在的假设随后可以被视为牛顿引力理论的一部分,而一些地球物理流体动力学模型会稍微违背这一假设。