National Laboratory of Solid State Microstructures & School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, United Kingdom.
Phys Rev Lett. 2018 Jun 15;120(24):243901. doi: 10.1103/PhysRevLett.120.243901.
General relativity uses curved space-time to describe accelerating frames. The movement of particles in different curved space-times can be regarded as equivalent physical processes based on the covariant transformation between different frames. In this Letter, we use one-dimensional curved metamaterials to mimic accelerating particles in curved space-times. The different curved shapes of structures are used to mimic different accelerating frames. The different geometric phases along the structure are used to mimic different movements in the frame. Using the covariant principle of general relativity, we can obtain equivalent nanostructures based on space-time transformations, such as the Lorentz transformation and conformal transformation. In this way, many covariant structures can be found that produce the same surface plasmon fields when excited by spin photons. A new kind of accelerating beam, the Rindler beam, is obtained based on the Rindler metric in gravity. Very large effective indices can be obtained in such systems based on geometric-phase gradient. This general covariant design method can be extended to many other optical media.
广义相对论利用弯曲时空来描述加速参考系。基于不同参考系之间的协变变换,可以将不同弯曲时空中的粒子运动视为等效的物理过程。在这封信中,我们使用一维弯曲超材料来模拟弯曲时空中的加速粒子。结构的不同弯曲形状用于模拟不同的加速参考系。结构上的不同几何相位用于模拟在参考系中的不同运动。利用广义相对论的协变原理,我们可以基于时空变换获得等效的纳米结构,如洛伦兹变换和共形变换。通过这种方式,可以找到许多协变结构,它们在被自旋光子激发时会产生相同的表面等离子体场。基于引力中的 Rindler 度规,可以得到一种新的加速光束,即 Rindler 光束。在这样的系统中,可以基于几何相梯度获得非常大的有效指数。这种广义协变设计方法可以扩展到许多其他光学介质。