Suppr超能文献

基于相变材料的多功能微机电光平台。

Multifunctional Microelectro-Opto-mechanical Platform Based on Phase-Transition Materials.

机构信息

Department of Materials Science and Engineering , University of California , Berkeley , California 94720 , United States.

State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument , Tsinghua University , Beijing 100084 , People's Republic of China.

出版信息

Nano Lett. 2018 Mar 14;18(3):1637-1643. doi: 10.1021/acs.nanolett.7b04477. Epub 2018 Feb 13.

Abstract

Along with the rapid development of hybrid electronic-photonic systems, multifunctional devices with dynamic responses have been widely investigated for improving many optoelectronic applications. For years, microelectro-opto-mechanical systems (MEOMS), one of the major approaches to realizing multifunctionality, have demonstrated profound reconfigurability and great reliability. However, modern MEOMS still suffer from limitations in modulation depth, actuation voltage, or miniaturization. Here, we demonstrate a new MEOMS multifunctional platform with greater than 50% optical modulation depth over a broad wavelength range. This platform is realized by a specially designed cantilever array, with each cantilever consisting of vanadium dioxide, chromium, and gold nanolayers. The abrupt structural phase transition of the embedded vanadium dioxide enables the reconfigurability of the platform. Diverse stimuli, such as temperature variation or electric current, can be utilized to control the platform, promising CMOS-compatible operating voltage. Multiple functionalities, including an active enhanced absorber and a reprogrammable electro-optic logic gate, are experimentally demonstrated to address the versatile applications of the MEOMS platform in fields such as communication, energy harvesting, and optical computing.

摘要

随着混合电子-光子系统的快速发展,具有动态响应的多功能器件已被广泛研究,以改善许多光电应用。多年来,微机电光电系统(MEMS)作为实现多功能性的主要方法之一,已经证明了其具有深刻的可重构性和很高的可靠性。然而,现代 MEMS 仍然受到调制深度、驱动电压或小型化的限制。在这里,我们展示了一种新的 MEMS 多功能平台,其在宽波长范围内具有超过 50%的光学调制深度。该平台是通过专门设计的悬臂梁阵列实现的,每个悬臂梁由二氧化钒、铬和金纳米层组成。嵌入式二氧化钒的突然结构相变使平台具有可重构性。可以利用温度变化或电流等多种刺激来控制平台,有望实现与 CMOS 兼容的工作电压。已经实验证明了多种功能,包括主动增强吸收器和可重编程电光逻辑门,以解决 MEMS 平台在通信、能量收集和光学计算等领域的多功能应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验