Fundamental and Computational Sciences Directorate and Institute for Integrated Catalysis , Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States.
Surface and Interface Physics, Institute of Physics , Karl-Franzens University , A-8010 Graz , Austria.
J Am Chem Soc. 2018 Apr 18;140(15):5102-5109. doi: 10.1021/jacs.7b12791. Epub 2018 Feb 13.
Graphene oxides are promising materials for novel electronic devices or anchoring of the active sites for catalytic applications. Here we focus on understanding the atomic oxygen (AO) binding and mobility on different regions of graphene (Gr) on Ru(0001). Differences in the Gr/Ru lattices result in the superstructure, which offers an array of distinct adsorption sites. We employ scanning tunneling microscopy and density functional theory to map out the chemical identity and stability of prepared AO functionalities in different Gr regions. The AO diffusion is utilized to establish that in the regions that are close to the metal substrate the terminally bonded enolate groups are strongly preferred over bridge-bonded epoxy groups. No oxygen species are observed on the graphene regions that are far from the underlying Ru, indicating their low relative stability. This study provides a clear fundamental basis for understanding the local structural, electronic factors and C-Ru bond strengthening/weakening processes that affect the stability of enolate and epoxy species.
氧化石墨烯是新型电子器件或催化应用中活性位点锚定的有前途的材料。在这里,我们专注于理解原子氧(AO)在 Ru(0001)上不同区域的石墨烯(Gr)上的结合和迁移。Gr/Ru 晶格的差异导致了超结构,提供了一系列不同的吸附位点。我们采用扫描隧道显微镜和密度泛函理论来绘制不同 Gr 区域中制备的 AO 官能团的化学特性和稳定性。AO 的扩散被用来确定在靠近金属基底的区域中,末端键合的烯醇基团比桥键合的环氧基团更稳定。在远离底层 Ru 的石墨烯区域中没有观察到氧物种,这表明它们的相对稳定性较低。这项研究为理解影响烯醇和环氧物种稳定性的局部结构、电子因素和 C-Ru 键强化/弱化过程提供了明确的基础。