Xiao Jing, Tian Zhaoxia, Huang Changming, Dong Liangwei
Opt Express. 2018 Feb 5;26(3):2650-2658. doi: 10.1364/OE.26.002650.
We address the propagation dynamics of gap solitons at the interface between uniform media and an optical lattice in the framework of a nonlinear fractional Schrödinger equation. Different families of solitons residing in the first and second bandgaps of the Floquet-Bloch spectrum are revealed. They feature a combination of the unique properties of fractional diffraction effects, surface waves and gap solitons. The instability of solitons can be remarkably suppressed by the decrease of Lévy index, especially obvious for solitons in the second gaps. Additionally, we study the properties of multi-peaked solitons in fractional dimensions and find that they can be made completely stable in a wide region, provided that their power exceeds a critical value. Counterintuitively, at a small Lévy index, the instability region shrinks with the increase of the number of soliton peaks.
我们在非线性分数阶薛定谔方程的框架下,研究了均匀介质与光学晶格界面处间隙孤子的传播动力学。揭示了驻留在弗洛凯 - 布洛赫谱的第一和第二带隙中的不同孤子族。它们具有分数衍射效应、表面波和间隙孤子的独特性质的组合。通过降低列维指数可以显著抑制孤子的不稳定性,这在第二带隙中的孤子中尤为明显。此外,我们研究了分数维中多峰孤子的性质,发现只要它们的功率超过临界值,就可以在很宽的区域内完全稳定。与直觉相反,在小列维指数下,不稳定性区域随着孤子峰数的增加而缩小。