Zhao Huaqiao, Gao Huotao, Cao Ting, Li Boya
Opt Express. 2018 Jan 22;26(2):A178-A191. doi: 10.1364/OE.26.00A178.
In this work, the collection of solar energy by a broad-band nanospiral antenna is investigated in order to solve the low efficiency of the solar rectenna based on conventional nanoantennas. The antenna impedance, radiation, polarization and effective area are all considered in the efficiency calculation using the finite integral technique. The wavelength range investigated is 300-3000 nm, which corresponds to more than 98% of the solar radiation energy. It's found that the nanospiral has stronger field enhancement in the gap than a nanodipole counterpart. And a maximum harvesting efficiency about 80% is possible in principle for the nanospiral coupled to a rectifier resistance of 200 Ω, while about 10% for the nanodipole under the same conditions. Moreover, the nanospiral could be coupled to a rectifier diode of high resistance more easily than the nanodipole. These results indicate that the efficient full-spectrum utilization, reception and conversion of solar energy can be achieved by the nanospiral antenna, which is expected to promote the solar rectenna to be a promising technology in the clean, renewable energy application.
在这项工作中,研究了宽带纳米螺旋天线对太阳能的收集,以解决基于传统纳米天线的太阳能整流天线效率低下的问题。在使用有限积分技术进行效率计算时,考虑了天线阻抗、辐射、极化和有效面积。所研究的波长范围为300 - 3000 nm,这对应了超过98%的太阳辐射能量。研究发现,纳米螺旋在间隙中的场增强比纳米偶极更强。原则上,对于耦合到200Ω整流电阻的纳米螺旋,最大收集效率可达约80%,而在相同条件下,纳米偶极的效率约为10%。此外,纳米螺旋比纳米偶极更容易耦合到高电阻整流二极管。这些结果表明,纳米螺旋天线能够实现太阳能的高效全光谱利用、接收和转换,有望推动太阳能整流天线成为清洁可再生能源应用中的一项有前景的技术。