Department of Physics, Kyung Hee University, Seoul, 02447, Korea.
Center for Spintronics Research, Korea Institute of Science and Technology, Seoul, 02792, Korea.
Sci Rep. 2018 Feb 5;8(1):2361. doi: 10.1038/s41598-018-20800-8.
Using Monte-Carlo simulations and micromagnetic simulations, we reveal how the spin structural correlation and the skyrmion dynamics are affected by the interlayer coupling in a chiral magnetic bilayer system, in which the two layers have opposite chirality. The interaction through interlayer coupling between chiral magnetic structures influences the static and dynamics properties profoundly. The competition between the Dzyaloshinskii-Moriya interaction and the interlayer interaction allows multiple magnetic structures to be energetically stable, which includes sole skyrmion states (skyrmion appears in only one of the layers) and skyrmion pair states (coupled skyrmions in top and bottom layers). When current driven spin transfer torques are applied to each state, the sole skyrmion state is mainly propelled by a spin transfer torque causing the skyrmion hall effect, but the skyrmion pair state is propelled by a torque from skyrmion-skyrmion interaction and not influenced by the skyrmion hall effect. Also upon application of an external magnetic field, we found the skyrmions in a skyrmion pair state extinguish in an exclusive way, as the annihilation of a skyrmion in one of the layers stabilizes the once paired skyrmion in the other layer, i.e. the skyrmion lattice sites have only one skyrmion in either layer.
通过蒙特卡罗模拟和微磁模拟,我们揭示了在具有相反手性的手性磁双层系统中,层间耦合如何影响自旋结构相关性和斯格明子动力学。通过手性磁结构之间的层间耦合相互作用,深刻地影响了静态和动力学性质。Dzyaloshinskii-Moriya 相互作用和层间相互作用之间的竞争使得多种磁结构具有能量稳定性,包括单一斯格明子态(斯格明子仅出现在一个层中)和斯格明子对态(顶层和底层的耦合斯格明子)。当对每个状态施加电流驱动的自旋转移扭矩时,单一斯格明子态主要由自旋转移扭矩推动,导致斯格明子霍尔效应,但斯格明子对态由斯格明子-斯格明子相互作用产生的扭矩推动,不受斯格明子霍尔效应的影响。此外,在外磁场的作用下,我们发现斯格明子对态中的斯格明子以排他的方式熄灭,因为一个层中的斯格明子的湮灭稳定了另一个层中曾经配对的斯格明子,即斯格明子晶格位只有一个斯格明子在每个层中。