Institute of Theoretical Physics and Astrophysics, University of Kiel, Leibnizstrasse 15, 24098 Kiel, Germany.
Peter Grünberg Institut (PGI-1) and Institute for Advanced Simulation (IAS-1), Forschungszentrum Jülich and JARA, 52425 Jülich, Germany.
Nat Commun. 2016 Jun 3;7:11779. doi: 10.1038/ncomms11779.
Magnetic skyrmions are localized, topologically protected spin structures that have been proposed for storing or processing information due to their intriguing dynamical and transport properties. Important in terms of applications is the recent discovery of interface stabilized skyrmions as evidenced in ultra-thin transition-metal films. However, so far only skyrmions at interfaces with a single atomic layer of a magnetic material were reported, which greatly limits their potential for application in devices. Here we predict the emergence of skyrmions in [4d/Fe2/5d]n multilayers, that is, structures composed of Fe biatomic layers sandwiched between 4d and 5d transition-metal layers. In these composite structures, the exchange and the Dzyaloshinskii-Moriya interactions that control skyrmion formation can be tuned separately by the two interfaces. This allows engineering skyrmions as shown based on density functional theory and spin dynamics simulations.
磁 skyrmions 是局域的、拓扑保护的自旋结构,由于其有趣的动力学和输运性质,被提议用于存储或处理信息。在应用方面,最近发现了界面稳定的 skyrmions,这在超薄膜的过渡金属中得到了证实。然而,到目前为止,只报道了具有单个原子层磁性材料的界面上的 skyrmions,这极大地限制了它们在器件中的应用潜力。在这里,我们预测了[4d/Fe2/5d]n 多层结构中 skyrmions 的出现,即由夹在 4d 和 5d 过渡金属层之间的 Fe 双原子层组成的结构。在这些复合结构中,控制 skyrmion 形成的交换和 Dzyaloshinskii-Moriya 相互作用可以通过两个界面分别进行调整。这允许根据密度泛函理论和自旋动力学模拟来设计 skyrmions。