Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
Department of Physics, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
Sci Rep. 2018 Feb 5;8(1):2404. doi: 10.1038/s41598-018-20774-7.
Experimental results on YBaCuFeO, in its incommensurate magnetic phase, appear to disagree on its ferroelectric response. Ambiguity exists on the nature of the spiral magnetic state too. Using first-principles density functional theory (DFT) calculations for the parent compound within LSDA + U + SO approximation, we reveal the nature of spiral state. The helical spiral is found to be more stable below the transition temperature as spins prefer to lie in ab plane. Dzyaloshinskii-Moriya (DM) interaction turns out to be negligibly small and the spin current mechanism is not valid in the helical spiral state, ruling out an electric polarisation from either. These results are in very good agreement with the recent, high quality, single-crystal data. We also investigate the magnetic transition in YBaSrCuFeO for the entire range (0 ≤ x ≤ 1) of doping. The exchange interactions are estimated as a function of doping and a quantum Monte Carlo (QMC) calculation on an effective spin Hamiltonian shows that the paramagnetic to commensurate phase transition temperature increases with doping till x = 0.5 and decreases beyond. These observations are consistent with experimental findings.
在 YBaCuFeO 的非共调磁相中进行的实验结果似乎与其铁电响应存在分歧。螺旋磁态的性质也存在不确定性。我们使用基于第一性原理密度泛函理论(DFT)的计算,在 LSDA+U+SO 近似下对母体化合物进行了计算,揭示了螺旋态的本质。在低于相变温度下,螺旋自旋更稳定,因为自旋倾向于位于 ab 平面内。Dzyaloshinskii-Moriya(DM)相互作用被证明非常小,并且螺旋态下的自旋流机制无效,因此不会产生任何极化。这些结果与最近高质量的单晶数据非常吻合。我们还研究了 YBaSrCuFeO 在整个掺杂范围内(0≤x≤1)的磁转变。我们估计了交换相互作用作为掺杂的函数,并且对有效自旋哈密顿量的量子蒙特卡罗(QMC)计算表明,顺磁到共调相转变温度随着掺杂的增加而增加,直到 x=0.5,然后降低。这些观察结果与实验发现一致。