Suppr超能文献

氧化物界面处电子液体的直接成像。

Direct imaging of the electron liquid at oxide interfaces.

作者信息

Song Kyung, Ryu Sangwoo, Lee Hyungwoo, Paudel Tula R, Koch Christoph T, Park Bumsu, Lee Ja Kyung, Choi Si-Young, Kim Young-Min, Kim Jong Chan, Jeong Hu Young, Rzchowski Mark S, Tsymbal Evgeny Y, Eom Chang-Beom, Oh Sang Ho

机构信息

Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.

Materials Modeling and Characterization Department, Korea Institute of Materials Science (KIMS), Changwon, Republic of Korea.

出版信息

Nat Nanotechnol. 2018 Mar;13(3):198-203. doi: 10.1038/s41565-017-0040-8. Epub 2018 Feb 5.

Abstract

The breaking of symmetry across an oxide heterostructure causes the electronic orbitals to be reconstructed at the interface into energy states that are different from their bulk counterparts . The detailed nature of the orbital reconstruction critically affects the spatial confinement and the physical properties of the electrons occupying the interfacial orbitals. Using an example of two-dimensional electron liquids forming at LaAlO/SrTiO interfaces with different crystal symmetry, we show that the selective orbital occupation and spatial quantum confinement of electrons can be resolved with subnanometre resolution using inline electron holography. For the standard (001) interface, the charge density map obtained by inline electron holography shows that the two-dimensional electron liquid is confined to the interface with narrow spatial extension (1.0 ± 0.3 nm in the half width). On the other hand, the two-dimensional electron liquid formed at the (111) interface shows a much broader spatial extension (3.3 ± 0.3 nm) with the maximum density located ~2.4 nm away from the interface, in excellent agreement with density functional theory calculations.

摘要

跨越氧化物异质结构的对称性破缺会导致电子轨道在界面处重构为与体相不同的能量状态。轨道重构的具体性质对占据界面轨道的电子的空间限制和物理性质有着至关重要的影响。以在具有不同晶体对称性的LaAlO/SrTiO界面形成的二维电子气为例,我们表明,使用在线电子全息术可以以亚纳米分辨率解析电子的选择性轨道占据和空间量子限制。对于标准的(001)界面,通过在线电子全息术获得的电荷密度图表明,二维电子气被限制在具有窄空间扩展(半高宽约为1.0±0.3nm)的界面处。另一方面,在(111)界面形成的二维电子气显示出更宽的空间扩展(约3.3±0.3nm),最大密度位于距界面约2.4nm处,这与密度泛函理论计算结果非常吻合。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验