Natural Resource Ecology Lab, Department of Ecosystem Science and Sustainability, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, 80523, USA.
Rocky Mountain National Park, National Park Service, 1000 West Highway 36, Estes Park, Colorado, 80517, USA.
Ecol Appl. 2018 Apr;28(3):816-825. doi: 10.1002/eap.1692.
Accurate assessment of abundance forms a central challenge in population ecology and wildlife management. Many statistical techniques have been developed to estimate population sizes because populations change over time and space and to correct for the bias resulting from animals that are present in a study area but not observed. The mobility of individuals makes it difficult to design sampling procedures that account for movement into and out of areas with fixed jurisdictional boundaries. Aerial surveys are the gold standard used to obtain data of large mobile species in geographic regions with harsh terrain, but these surveys can be prohibitively expensive and dangerous. Estimating abundance with ground-based census methods have practical advantages, but it can be difficult to simultaneously account for temporary emigration and observer error to avoid biased results. Contemporary research in population ecology increasingly relies on telemetry observations of the states and locations of individuals to gain insight on vital rates, animal movements, and population abundance. Analytical models that use observations of movements to improve estimates of abundance have not been developed. Here we build upon existing multi-state mark-recapture methods using a hierarchical N-mixture model with multiple sources of data, including telemetry data on locations of individuals, to improve estimates of population sizes. We used a state-space approach to model animal movements to approximate the number of marked animals present within the study area at any observation period, thereby accounting for a frequently changing number of marked individuals. We illustrate the approach using data on a population of elk (Cervus elaphus nelsoni) in Northern Colorado, USA. We demonstrate substantial improvement compared to existing abundance estimation methods and corroborate our results from the ground based surveys with estimates from aerial surveys during the same seasons. We develop a hierarchical Bayesian N-mixture model using multiple sources of data on abundance, movement and survival to estimate the population size of a mobile species that uses remote conservation areas. The model improves accuracy of inference relative to previous methods for estimating abundance of open populations.
准确评估种群丰度是种群生态学和野生动物管理的核心挑战。已经开发了许多统计技术来估计种群数量,因为种群随时间和空间而变化,并且需要纠正由于存在于研究区域但未观察到的动物而导致的偏差。个体的流动性使得难以设计采样程序,以考虑到具有固定管辖边界的区域内的进入和离开。航空调查是获取地理区域内大型移动物种数据的黄金标准,这些调查在地形恶劣的地区进行,但这些调查可能非常昂贵和危险。使用基于地面的普查方法估计丰度具有实际优势,但很难同时考虑临时外迁和观察者误差,以避免产生有偏差的结果。种群生态学的当代研究越来越依赖于个体状态和位置的遥测观测,以深入了解生命率、动物运动和种群丰度。尚未开发使用个体运动观测来改进丰度估计的分析模型。在这里,我们使用现有的多状态标记-重捕方法,使用具有多个数据源的层次 N 混合物模型,包括个体位置的遥测数据,来改进种群大小的估计。我们使用状态空间方法来模拟动物运动,以近似在任何观察期内在研究区域内存在的标记动物数量,从而考虑到标记个体数量的频繁变化。我们使用美国科罗拉多州北部的麋鹿(Cervus elaphus nelsoni)种群的数据来说明该方法。与现有的丰度估计方法相比,我们展示了实质性的改进,并通过地面调查的结果与同一季节的航空调查的结果进行了验证。我们使用多个来源的数据,包括丰度、运动和生存数据,开发了一个分层贝叶斯 N 混合物模型,用于估计使用远程保护区的移动物种的种群数量。该模型相对于以前用于估算开放种群丰度的方法提高了推断的准确性。