Suppr超能文献

利用相机和遥测数据进行丰度、分布、运动和空间利用建模。

Modeling abundance, distribution, movement and space use with camera and telemetry data.

机构信息

Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, 30602, USA.

Caesar Kleberg Wildlife Research Institute at Texas A&M University-Kingsville, Kingsville, Texas, 78363, USA.

出版信息

Ecology. 2022 Oct;103(10):e3583. doi: 10.1002/ecy.3583. Epub 2021 Dec 16.

Abstract

Studies of animal abundance and distribution are often conducted independently of research on movement, despite the important links between processes. Movement can cause rapid changes in spatial variation in density, and movement influences detection probability and therefore estimates of abundance from inferential methods such as spatial capture-recapture (SCR). Technological developments including camera traps and GPS telemetry have opened new opportunities for studying animal demography and movement, yet statistical models for these two data types have largely developed along parallel tracks. We present a hierarchical model in which both datasets are conditioned on a movement process for a clearly defined population. We fitted the model to data from 60 camera traps and 23,572 GPS telemetry locations collected on 17 male white-tailed deer in the Big Cypress National Preserve, Florida, USA during July 2015. Telemetry data were collected on a 3-4 h acquisition schedule, and we modeled the movement paths of all individuals in the region with a Ornstein-Uhlenbeck process that included individual-specific random effects. Two of the 17 deer with GPS collars were detected on cameras. An additional 20 male deer without collars were detected on cameras and individually identified based on their unique antler characteristics. Abundance was 126 (95% CI: 88-177) in the 228 km region, only slightly higher than estimated using a standard SCR model: 119 (84-168). The standard SCR model, however, was unable to describe individual heterogeneity in movement rates and space use as revealed by the joint model. Joint modeling allowed the telemetry data to inform the movement model and the SCR encounter model, while leveraging information in the camera data to inform abundance, distribution and movement. Unlike most existing methods for population-level inference on movement, the joint SCR-movement model can yield unbiased inferences even if non-uniform sampling is used to deploy transmitters. Potential extensions of the model include the addition of resource selection parameters, and relaxation of the closure assumption when interest lies in survival and recruitment. These developments would contribute to the emerging holistic framework for the study of animal ecology, one that uses modern technology and spatio-temporal statistics to learn about interactions between behavior and demography.

摘要

动物丰度和分布的研究通常与运动研究独立进行,尽管这两个过程之间存在重要联系。运动可能导致密度的空间变化迅速变化,并且运动影响检测概率,从而影响从空间捕获-再捕获(SCR)等推断方法得出的丰度估计。包括相机陷阱和 GPS 遥测在内的技术发展为研究动物种群动态和运动提供了新的机会,但这两种数据类型的统计模型主要是沿着平行的轨道发展的。我们提出了一个层次模型,其中两个数据集都取决于一个明确界定的种群的运动过程。我们将模型拟合到 2015 年 7 月在美国佛罗里达州大柏树国家保护区收集的 60 个相机陷阱和 23572 个 GPS 遥测位置的 17 只雄性白尾鹿的数据。遥测数据是在 3-4 小时的采集时间表上收集的,我们使用包含个体特定随机效应的 Ornstein-Uhlenbeck 过程对该地区的所有个体的运动路径进行建模。17 只戴 GPS 项圈的鹿中有 2 只被相机检测到。另外 20 只没有项圈的雄性鹿也被相机检测到,并根据其独特的鹿角特征进行了个体识别。在 228 公里的区域内,丰度为 126(95%置信区间:88-177),略高于使用标准 SCR 模型估计的 119(84-168)。然而,联合模型揭示了标准 SCR 模型无法描述运动率和空间利用的个体异质性。联合建模允许遥测数据为运动模型和 SCR 遭遇模型提供信息,同时利用相机数据中的信息来提供丰度、分布和运动信息。与大多数用于运动的群体水平推理的现有方法不同,联合 SCR-运动模型即使使用非均匀采样来部署发射器也可以得出无偏推断。该模型的潜在扩展包括添加资源选择参数,以及在关注生存和招募时放松封闭假设。这些发展将有助于新兴的动物生态学整体框架,该框架利用现代技术和时空统计来了解行为和种群动态之间的相互作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验