Suppr超能文献

疾病结构混合模型:使用计数数据对疾病动态进行建模的实用指南。

Disease-structured -mixture models: A practical guide to model disease dynamics using count data.

作者信息

DiRenzo Graziella V, Che-Castaldo Christian, Saunders Sarah P, Campbell Grant Evan H, Zipkin Elise F

机构信息

Department of Integrative Biology, College of Natural Science Michigan State University East Lansing Michigan.

Department of Ecology and Evolution Stony Brook University Stony Brook New York.

出版信息

Ecol Evol. 2019 Feb 5;9(2):899-909. doi: 10.1002/ece3.4849. eCollection 2019 Jan.

Abstract

Obtaining inferences on disease dynamics (e.g., host population size, pathogen prevalence, transmission rate, host survival probability) typically requires marking and tracking individuals over time. While multistate mark-recapture models can produce high-quality inference, these techniques are difficult to employ at large spatial and long temporal scales or in small remnant host populations decimated by virulent pathogens, where low recapture rates may preclude the use of mark-recapture techniques. Recently developed -mixture models offer a statistical framework for estimating wildlife disease dynamics from count data. -mixture models are a type of state-space model in which observation error is attributed to failing to detect some individuals when they are present (i.e., false negatives). The analysis approach uses repeated surveys of sites over a period of population closure to estimate detection probability. We review the challenges of modeling disease dynamics and describe how -mixture models can be used to estimate common metrics, including pathogen prevalence, transmission, and recovery rates while accounting for imperfect host and pathogen detection. We also offer a perspective on future research directions at the intersection of quantitative and disease ecology, including the estimation of false positives in pathogen presence, spatially explicit disease-structured -mixture models, and the integration of other data types with count data to inform disease dynamics. Managers rely on accurate and precise estimates of disease dynamics to develop strategies to mitigate pathogen impacts on host populations. At a time when pathogens pose one of the greatest threats to biodiversity, statistical methods that lead to robust inferences on host populations are critically needed for rapid, rather than incremental, assessments of the impacts of emerging infectious diseases.

摘要

推断疾病动态(例如宿主种群规模、病原体流行率、传播率、宿主存活概率)通常需要长期标记和追踪个体。虽然多状态标记重捕模型能够得出高质量的推断结果,但这些技术在大空间尺度和长时间尺度下难以应用,或者在因烈性病原体而数量锐减的小型残余宿主种群中难以应用,因为低重捕率可能会妨碍标记重捕技术的使用。最近开发的 - 混合模型提供了一个从计数数据估计野生动物疾病动态的统计框架。- 混合模型是一种状态空间模型,其中观测误差归因于个体存在时未能检测到某些个体(即假阴性)。该分析方法利用在种群封闭期间对地点的重复调查来估计检测概率。我们回顾了疾病动态建模的挑战,并描述了 - 混合模型如何用于估计常见指标,包括病原体流行率、传播率和恢复率,同时考虑宿主和病原体检测不完美的情况。我们还对定量生态学和疾病生态学交叉领域的未来研究方向提出了看法,包括病原体存在时假阳性的估计、空间明确的疾病结构 - 混合模型,以及将其他数据类型与计数数据整合以了解疾病动态。管理者依靠对疾病动态的准确和精确估计来制定策略,以减轻病原体对宿主种群的影响。在病原体对生物多样性构成最大威胁之一的时代,对于新兴传染病影响的快速而非渐进评估,迫切需要能够对宿主种群做出可靠推断的统计方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7c6/6362444/c817c2ef9799/ECE3-9-899-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验