Suppr超能文献

脑肿瘤生长时空模型的比较研究

Comparative study between spatio-temporal models for brain tumor growth.

作者信息

Elaff Ihab

机构信息

Computer Engineering, Faculty of Engineering and Natural Sciences, Uskudar University, Istanbul, Turkey.

出版信息

Biochem Biophys Res Commun. 2018 Feb 19;496(4):1263-1268. doi: 10.1016/j.bbrc.2018.01.183. Epub 2018 Feb 1.

Abstract

Modeling of brain tumor growth simulator can estimate life expectancy for individual patients, estimate future effect of brain damages toward human senses and attitude and help in evaluating the efficiency of applied treatments. Brain tumor growth can be calculated based on Spatio-Temporal mathematical models namely the isotropic reaction-diffusion model and the anisotropic reaction-diffusion model where the second model produces more realistic results. Tumor normally grows in White Matter (WM) five times faster than in Gray Matter (GM) which makes brain tissues modeled as inhomogeneous-anisotropic material to assign different parameters to each tissue. In this research a comparative study between several tumor growth models has been achieved to clarify the effect of different algorithms on modeling tumor grow.

摘要

脑肿瘤生长模拟器的建模可以估计个体患者的预期寿命,估计脑损伤对人类感官和态度的未来影响,并有助于评估所应用治疗方法的效率。脑肿瘤的生长可以基于时空数学模型进行计算,即各向同性反应扩散模型和各向异性反应扩散模型,其中第二种模型产生更现实的结果。肿瘤通常在白质(WM)中的生长速度比在灰质(GM)中快五倍,这使得脑组织被建模为非均匀各向异性材料,以便为每个组织分配不同的参数。在本研究中,对几种肿瘤生长模型进行了比较研究,以阐明不同算法对肿瘤生长建模的影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验