Suppr超能文献

马尔堡-明斯特情感障碍队列研究(MACS):磁共振神经影像学数据的质量保证方案。

The Marburg-Münster Affective Disorders Cohort Study (MACS): A quality assurance protocol for MR neuroimaging data.

机构信息

Department of Psychiatry and Psychotherapy, University Marburg, Marburg, Germany; Marburg Center for Mind, Brain and Behavior (MCMBB), Marburg, Germany.

Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany.

出版信息

Neuroimage. 2018 May 15;172:450-460. doi: 10.1016/j.neuroimage.2018.01.079. Epub 2018 Feb 1.

Abstract

Large, longitudinal, multi-center MR neuroimaging studies require comprehensive quality assurance (QA) protocols for assessing the general quality of the compiled data, indicating potential malfunctions in the scanning equipment, and evaluating inter-site differences that need to be accounted for in subsequent analyses. We describe the implementation of a QA protocol for functional magnet resonance imaging (fMRI) data based on the regular measurement of an MRI phantom and an extensive variety of currently published QA statistics. The protocol is implemented in the MACS (Marburg-Münster Affective Disorders Cohort Study, http://for2107.de/), a two-center research consortium studying the neurobiological foundations of affective disorders. Between February 2015 and October 2016, 1214 phantom measurements have been acquired using a standard fMRI protocol. Using 444 healthy control subjects which have been measured between 2014 and 2016 in the cohort, we investigate the extent of between-site differences in contrast to the dependence on subject-specific covariates (age and sex) for structural MRI, fMRI, and diffusion tensor imaging (DTI) data. We show that most of the presented QA statistics differ severely not only between the two scanners used for the cohort but also between experimental settings (e.g. hardware and software changes), demonstrate that some of these statistics depend on external variables (e.g. time of day, temperature), highlight their strong dependence on proper handling of the MRI phantom, and show how the use of a phantom holder may balance this dependence. Site effects, however, do not only exist for the phantom data, but also for human MRI data. Using T1-weighted structural images, we show that total intracranial (TIV), grey matter (GMV), and white matter (WMV) volumes significantly differ between the MR scanners, showing large effect sizes. Voxel-based morphometry (VBM) analyses show that these structural differences observed between scanners are most pronounced in the bilateral basal ganglia, thalamus, and posterior regions. Using DTI data, we also show that fractional anisotropy (FA) differs between sites in almost all regions assessed. When pooling data from multiple centers, our data show that it is a necessity to account not only for inter-site differences but also for hardware and software changes of the scanning equipment. Also, the strong dependence of the QA statistics on the reliable placement of the MRI phantom shows that the use of a phantom holder is recommended to reduce the variance of the QA statistics and thus to increase the probability of detecting potential scanner malfunctions.

摘要

大型、纵向、多中心磁共振神经影像学研究需要全面的质量保证 (QA) 协议,以评估编译数据的总体质量,指示扫描设备的潜在故障,并评估后续分析中需要考虑的站点间差异。我们描述了一种基于 MRI 体模的常规测量和广泛的现有发布的 QA 统计数据的功能磁共振成像 (fMRI) 数据 QA 协议的实施。该协议在 MACS(马尔堡-明斯特情感障碍队列研究,http://for2107.de/)中实施,这是一个研究情感障碍神经生物学基础的双中心研究联盟。在 2015 年 2 月至 2016 年 10 月期间,使用标准 fMRI 协议采集了 1214 次体模测量。使用 2014 年至 2016 年期间在队列中测量的 444 名健康对照者,我们研究了结构磁共振成像、功能磁共振成像和扩散张量成像 (DTI) 数据中与站点间差异的程度相比,对主体特异性协变量(年龄和性别)的依赖程度。我们表明,大多数呈现的 QA 统计数据不仅在用于队列的两个扫描仪之间存在严重差异,而且在实验设置(例如硬件和软件更改)之间存在严重差异,表明其中一些统计数据取决于外部变量(例如,时间,温度),突出显示它们对 MRI 体模的正确处理有很强的依赖性,并展示了如何使用体模支架来平衡这种依赖性。站点效应不仅存在于体模数据中,也存在于人类 MRI 数据中。使用 T1 加权结构图像,我们表明,总颅内(TIV)、灰质(GMV)和白质(WMV)体积在磁共振扫描仪之间存在显著差异,显示出较大的效应大小。基于体素的形态测量(VBM)分析表明,在双侧基底节、丘脑和后部区域观察到的这些结构差异在扫描仪之间最为明显。使用 DTI 数据,我们还表明,在评估的几乎所有区域中,各站点之间的分数各向异性 (FA) 存在差异。当从多个中心汇总数据时,我们的数据表明,不仅需要考虑站点间差异,还需要考虑扫描设备的硬件和软件变化。此外,QA 统计数据对 MRI 体模可靠放置的强烈依赖性表明,建议使用体模支架来减少 QA 统计数据的方差,从而增加检测潜在扫描仪故障的概率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验