Suppr超能文献

由邻居评判:大型异质样本的脑结构规范性概况

Judged by your neighbors: Brain structural normativity profiles for large and heterogeneous samples.

作者信息

Leenings Ramona, Winter Nils R, Ernsting Jan, Konowski Maximilian, Holstein Vincent, Meinert Susanne, Spanagel Jennifer, Barkhau Carlotta, Fisch Lukas, Goltermann Janik, Gerdes Malte F, Grotegerd Dominik, Leehr Elisabeth J, Peters Annette, Krist Lilian, Willich Stefan N, Pischon Tobias, Völzke Henry, Haubold Johannes, Kauczor Hans-Ulrich, Niendorf Thoralf, Richter Maike, Dannlowski Udo, Berger Klaus, Jiang Xiaoyi, Cole James, Opel Nils, Hahn Tim

机构信息

Faculty of Mathematics and Computer Science, University of Münster, Münster, Germany.

Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena Germany.

出版信息

medRxiv. 2025 Feb 19:2024.12.24.24319598. doi: 10.1101/2024.12.24.24319598.

Abstract

The detection of norm deviations is fundamental to clinical decision making and impacts our ability to diagnose and treat diseases effectively. Current normative modeling approaches rely on generic comparisons and quantify deviations in relation to the population average. However, generic models interpolate subtle nuances and risk the loss of critical information, thereby compromising effective personalization of health care strategies. To acknowledge the substantial heterogeneity among patients and support the paradigm shift of precision medicine, we introduce Nearest Neighbor Normativity (N), which is a strategy to refine normativity evaluations in diverse and heterogeneous clinical study populations. We address current methodological shortcomings by accommodating several equally normative population prototypes, comparing individuals from multiple perspectives and designing specifically tailored control groups. Applied to brain structure in 36,896 individuals, the N framework provides empirical evidence for its utility and significantly outperforms traditional methods in the detection of pathological alterations. Our results underscore N's potential for individual assessments in medical practice, where norm deviations are not merely a benchmark, but an important metric supporting the realization of personalized patient care.

摘要

检测正常偏差是临床决策的基础,影响着我们有效诊断和治疗疾病的能力。当前的规范建模方法依赖于一般比较,并根据总体平均值来量化偏差。然而,一般模型会忽略细微差别,并可能丢失关键信息,从而损害医疗保健策略的有效个性化。为了认识到患者之间的巨大异质性并支持精准医学的范式转变,我们引入了最近邻规范性(N),这是一种在多样且异质的临床研究人群中完善规范性评估的策略。我们通过纳入多个同等规范的人群原型、从多个角度比较个体以及设计专门定制的对照组来解决当前方法学上的不足。将N框架应用于36896人的脑结构,为其效用提供了实证证据,并且在检测病理改变方面显著优于传统方法。我们的结果强调了N在医学实践中进行个体评估的潜力,在医学实践中,正常偏差不仅仅是一个基准,而是支持实现个性化患者护理的重要指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7201/11849454/2cf10ff7fbb1/nihpp-2024.12.24.24319598v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验