文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

马克 VCID 脑小血管联盟:二、神经影像学协议。

MarkVCID cerebral small vessel consortium: II. Neuroimaging protocols.

机构信息

Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

Department of Ophthalmology, USC Roski Eye Institute, USC Ginsberg Institute for Biomedical Therapeutics, Los Angeles, California, USA.

出版信息

Alzheimers Dement. 2021 Apr;17(4):716-725. doi: 10.1002/alz.12216. Epub 2021 Jan 21.


DOI:10.1002/alz.12216
PMID:33480157
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8627001/
Abstract

The MarkVCID consortium was formed under cooperative agreements with the National Institute of Neurologic Diseases and Stroke (NINDS) and National Institute on Aging (NIA) in 2016 with the goals of developing and validating biomarkers for the cerebral small vessel diseases associated with the vascular contributions to cognitive impairment and dementia (VCID). Rigorously validated biomarkers have consistently been identified as crucial for multicenter studies to identify effective strategies to prevent and treat VCID, specifically to detect increased VCID risk, diagnose the presence of small vessel disease and its subtypes, assess prognosis for disease progression or response to treatment, demonstrate target engagement or mechanism of action for candidate interventions, and monitor disease progression during treatment. The seven project sites and central coordinating center comprising MarkVCID, working with NINDS and NIA, identified a panel of 11 candidate fluid- and neuroimaging-based biomarker kits and established harmonized multicenter study protocols (see companion paper "MarkVCID cerebral small vessel consortium: I. Enrollment, clinical, fluid protocols" for full details). Here we describe the MarkVCID neuroimaging protocols with specific focus on validating their application to future multicenter trials. MarkVCID procedures for participant enrollment; clinical and cognitive evaluation; and collection, handling, and instrumental validation of fluid samples are described in detail in a companion paper. Magnetic resonance imaging (MRI) has long served as the neuroimaging modality of choice for cerebral small vessel disease and VCID because of its sensitivity to a wide range of brain properties, including small structural lesions, connectivity, and cerebrovascular physiology. Despite MRI's widespread use in the VCID field, there have been relatively scant data validating the repeatability and reproducibility of MRI-based biomarkers across raters, scanner types, and time intervals (collectively defined as instrumental validity). The MRI protocols described here address the core MRI sequences for assessing cerebral small vessel disease in future research studies, specific sequence parameters for use across various research scanner types, and rigorous procedures for determining instrumental validity. Another candidate neuroimaging modality considered by MarkVCID is optical coherence tomography angiography (OCTA), a non-invasive technique for directly visualizing retinal capillaries as a marker of the cerebral capillaries. OCTA has theoretical promise as a unique opportunity to visualize small vessels derived from the cerebral circulation, but at a considerably earlier stage of development than MRI. The additional OCTA protocols described here address procedures for determining OCTA instrumental validity, evaluating sources of variability such as pupil dilation, and handling data to maintain participant privacy. MRI protocol and instrumental validation The core sequences selected for the MarkVCID MRI protocol are three-dimensional T1-weighted multi-echo magnetization-prepared rapid-acquisition-of-gradient-echo (ME-MPRAGE), three-dimensional T2-weighted fast spin echo fluid-attenuated-inversion-recovery (FLAIR), two-dimensional diffusion-weighted spin-echo echo-planar imaging (DWI), three-dimensional T2*-weighted multi-echo gradient echo (3D-GRE), three-dimensional T -weighted fast spin-echo imaging (T2w), and two-dimensional T2*-weighted gradient echo echo-planar blood-oxygenation-level-dependent imaging with brief periods of CO inhalation (BOLD-CVR). Harmonized parameters for each of these core sequences were developed for four 3 Tesla MRI scanner models in widespread use at academic medical centers. MarkVCID project sites are trained and certified for their instantiation of the consortium MRI protocols. Sites are required to perform image quality checks every 2 months using the Alzheimer's Disease Neuroimaging Initiative phantom. Instrumental validation for MarkVCID MRI-based biomarkers is operationally defined as inter-rater reliability, test-retest repeatability, and inter-scanner reproducibility. Assessments of these instrumental properties are performed on individuals representing a range of cerebral small vessel disease from mild to severe. Inter-rater reliability is determined by distribution of an independent dataset of MRI scans to each analysis site. Test-retest repeatability is determined by repeat MRI scans performed on individual participants on a single MRI scanner after a short (1- to 14-day) interval. Inter-scanner reproducibility is determined by repeat MRI scans performed on individuals performed across four MRI scanner models. OCTA protocol and instrumental validation The MarkVCID OCTA protocol uses a commercially available, Food and Drug Administration-approved OCTA apparatus. Imaging is performed on one dilated and one undilated eye to assess the need for dilation. Scans are performed in quadruplicate. MarkVCID project sites participating in OCTA validation are trained and certified by this biomarker's lead investigator. Inter-rater reliability for OCTA is assessed by distribution of OCTA datasets to each analysis site. Test-retest repeatability is assessed by repeat OCTA imaging on individuals on the same day as their baseline OCTA and a different-day repeat session after a short (1- to 14-day) interval. Methods were developed to allow the OCTA data to be de-identified by the sites before transmission to the central data management system. The MarkVCID neuroimaging protocols, like the other MarkVCID procedures, are designed to allow translation to multicenter trials and as a template for outside groups to generate directly comparable neuroimaging data. The MarkVCID neuroimaging protocols are available to the biomedical community and intended to be shared. In addition to the instrumental validation procedures described here, each of the neuroimaging MarkVCID kits will undergo biological validation to determine its ability to measure important aspects of VCID such as cognitive function. The analytic methods for the neuroimaging-based kits and the results of these validation studies will be published separately. The results will ultimately determine the neuroimaging kits' potential usefulness for multicenter interventional trials in small vessel disease-related VCID.

摘要

马克 VCID 联盟是由美国国立神经病学与卒中研究所(NINDS)和美国国立老龄化研究所(NIA)于 2016 年通过合作协议成立的,其目标是开发和验证与血管性认知障碍和痴呆(VCID)相关的脑小血管疾病的生物标志物。经过严格验证的生物标志物一直被认为是多中心研究的关键,这些研究旨在确定预防和治疗 VCID 的有效策略,特别是为了检测增加的 VCID 风险、诊断小血管疾病及其亚型、评估疾病进展或治疗反应的预后、证明候选干预措施的靶点结合或作用机制,以及在治疗期间监测疾病进展。马克 VCID 的七个项目地点和中央协调中心,与 NINDS 和 NIA 一起,确定了一组 11 种候选的基于液体和神经影像学的生物标志物试剂盒,并建立了协调一致的多中心研究方案(有关详细信息,请参阅“马克 VCID 脑小血管联盟:I. 入组、临床、液体方案”的配套论文)。在这里,我们描述了马克 VCID 的神经影像学协议,特别关注其在未来多中心试验中的应用。马克 VCID 程序包括参与者招募、临床和认知评估以及液体样本的收集、处理和仪器验证,这些内容在一份配套论文中有详细描述。磁共振成像(MRI)由于其对广泛的脑特性的敏感性,包括小结构损伤、连通性和脑血管生理学,因此长期以来一直是脑小血管疾病和 VCID 的神经影像学选择。尽管 MRI 在 VCID 领域得到了广泛的应用,但在评估不同扫描者、扫描仪类型和时间间隔(统称为仪器有效性)之间基于 MRI 的生物标志物的重复性和再现性方面,数据相对较少。这里描述的 MRI 协议针对未来研究中评估脑小血管疾病的核心 MRI 序列、适用于各种研究扫描仪类型的特定序列参数以及确定仪器有效性的严格程序。马克 VCID 考虑的另一种候选神经影像学方法是光相干断层扫描血管造影术(OCTA),这是一种直接可视化视网膜毛细血管的非侵入性技术,可作为脑毛细血管的标志物。OCTA 具有作为一种独特机会来可视化源自脑循环的小血管的理论潜力,但与 MRI 相比,它处于相当早期的发展阶段。这里描述的额外 OCTA 协议涉及确定 OCTA 仪器有效性的程序、评估瞳孔扩张等来源的变异性以及处理数据以维护参与者隐私的程序。MRI 协议和仪器验证为马克 VCID MRI 协议选择的核心序列是三维 T1 加权多回波磁化准备快速采集梯度回波(ME-MPRAGE)、三维 T2 加权快速自旋回波液体衰减反转恢复(FLAIR)、二维扩散加权自旋回波平面成像(DWI)、三维 T2*-加权多回波梯度回波(3D-GRE)、三维 T1 加权快速自旋回波成像(T2w)和二维 T2*-加权梯度回波平面成像血氧水平依赖性成像,伴有短暂的 CO 吸入(BOLD-CVR)。为在学术医疗中心广泛使用的四种 3T MRI 扫描仪模型开发了这些核心序列的协调参数。马克 VCID 项目地点经过培训并获得联盟 MRI 协议的认证。站点需要每两个月使用阿尔茨海默病神经影像学倡议(Alzheimer's Disease Neuroimaging Initiative)幻影进行图像质量检查。马克 VCID 基于 MRI 的生物标志物的仪器验证被操作性地定义为评分者间可靠性、测试-重测重复性和扫描仪间可重复性。对代表从轻度到重度脑小血管疾病的个体进行这些仪器特性的评估。评分者间可靠性通过将 MRI 扫描的独立数据集分配给每个分析站点来确定。测试-重测重复性通过在短时间(1-14 天)间隔后对单个 MRI 扫描仪上的个体进行重复 MRI 扫描来确定。扫描仪间可重复性通过在四个 MRI 扫描仪模型上对个体进行重复 MRI 扫描来确定。OCTA 协议和仪器验证马克 VCID OCTA 协议使用经过食品和药物管理局批准的商用 OCTA 设备。对一只散瞳眼和一只未散瞳眼进行成像,以评估散瞳的必要性。扫描进行四重。参与 OCTA 验证的马克 VCID 项目地点由该生物标志物的首席研究员进行培训和认证。OCTA 的评分者间可靠性通过将 OCTA 数据集分发给每个分析站点来评估。测试-重测重复性通过在同一天对基线 OCTA 和不同日期的重复会话对个体进行重复 OCTA 成像来评估,间隔时间较短(1-14 天)。开发了方法,允许站点在将 OCTA 数据传输到中央数据管理系统之前对其进行去识别。与马克 VCID 的其他程序一样,马克 VCID 神经影像学协议旨在允许转化为多中心试验,并作为外部团体生成直接可比神经影像学数据的模板。马克 VCID 神经影像学协议可供生物医学社区使用,并旨在共享。除了这里描述的仪器验证程序外,每个神经影像学马克 VCID 套件都将进行生物学验证,以确定其测量血管性认知障碍等重要方面的能力。基于神经影像学的试剂盒的分析方法和这些验证研究的结果将单独公布。最终结果将决定神经影像学试剂盒在小血管疾病相关 VCID 的多中心干预试验中的潜在用途。

相似文献

[1]
MarkVCID cerebral small vessel consortium: II. Neuroimaging protocols.

Alzheimers Dement. 2021-4

[2]
MarkVCID cerebral small vessel consortium: I. Enrollment, clinical, fluid protocols.

Alzheimers Dement. 2021-4

[3]
Antithrombotic therapy to prevent cognitive decline in people with small vessel disease on neuroimaging but without dementia.

Cochrane Database Syst Rev. 2022-7-14

[4]
The Black Book of Psychotropic Dosing and Monitoring.

Psychopharmacol Bull. 2024-7-8

[5]
Biological validation of peak-width of skeletonized mean diffusivity as a VCID biomarker: The MarkVCID Consortium.

Alzheimers Dement. 2024-12

[6]
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of paclitaxel, docetaxel, gemcitabine and vinorelbine in non-small-cell lung cancer.

Health Technol Assess. 2001

[7]
Efficacy of nicergoline in dementia and other age associated forms of cognitive impairment.

Cochrane Database Syst Rev. 2001

[8]
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.

Health Technol Assess. 2006-9

[9]
Regional cerebral blood flow single photon emission computed tomography for detection of Frontotemporal dementia in people with suspected dementia.

Cochrane Database Syst Rev. 2015-6-23

[10]
Cerebrovascular reactivity MRI as a biomarker for cerebral small vessel disease-related cognitive decline: Multi-site validation in the MarkVCID Consortium.

Alzheimers Dement. 2024-8

引用本文的文献

[1]
Superpixel-ComBat modeling: A joint approach for harmonization and characterization of inter-scanner variability in T1-weighted images.

Imaging Neurosci (Camb). 2024-10-3

[2]
Celebrating 40 years of the University of Kentucky Alzheimer's Disease Research Center.

Alzheimers Dement. 2025-5

[3]
Diagnosing neurodegenerative disorders using retina as an external window: A systematic review of OCT-MRI correlations.

J Alzheimers Dis. 2025-6

[4]
Development and validation of a harmonized memory score for multicenter Alzheimer's disease and related dementia research.

medRxiv. 2025-4-3

[5]
OCT Angiography-Derived Retinal Capillary Perfusion Measures in the Framingham Heart Study.

Ophthalmol Sci. 2024-12-27

[6]
Healthy dietary intake diminishes the effect of cerebral small vessel disease on cognitive performance in older adults.

Front Neurol. 2025-3-6

[7]
Cerebral artery and brain pathology correlates of antemortem cerebral artery 4D flow MRI.

Imaging Neurosci (Camb). 2024

[8]
Extended Technical and Clinical Validation of Deep Learning-Based Brainstem Segmentation for Application in Neurodegenerative Diseases.

Hum Brain Mapp. 2025-2-15

[9]
White matter free water mediates the associations between placental growth factor, white matter hyperintensities, and cognitive status.

Alzheimers Dement. 2025-2

[10]
Longitudinal changes in white matter free water in cerebral small vessel disease: Relationship to cerebral blood flow and white matter fiber alterations.

J Cereb Blood Flow Metab. 2025-5

本文引用的文献

[1]
MarkVCID cerebral small vessel consortium: I. Enrollment, clinical, fluid protocols.

Alzheimers Dement. 2021-4

[2]
Harmonizing brain magnetic resonance imaging methods for vascular contributions to neurodegeneration.

Alzheimers Dement (Amst). 2019-2-26

[3]
The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites.

Dev Cogn Neurosci. 2018-3-14

[4]
Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications.

Prog Retin Eye Res. 2017-9

[5]
Multimodal population brain imaging in the UK Biobank prospective epidemiological study.

Nat Neurosci. 2016-11

[6]
On the optimization of imaging protocol for the mapping of cerebrovascular reactivity.

J Magn Reson Imaging. 2016-3

[7]
Magnetic resonance imaging in Alzheimer's Disease Neuroimaging Initiative 2.

Alzheimers Dement. 2015-7

[8]
Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration.

Lancet Neurol. 2013-8

[9]
Physiologic underpinnings of negative BOLD cerebrovascular reactivity in brain ventricles.

Neuroimage. 2013-12

[10]
Enlarged perivascular spaces as a marker of underlying arteriopathy in intracerebral haemorrhage: a multicentre MRI cohort study.

J Neurol Neurosurg Psychiatry. 2013-2-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索