Suppr超能文献

基于机器学习的异基因造血细胞移植供者选择预后模型的评估。

Evaluation of a Machine Learning-Based Prognostic Model for Unrelated Hematopoietic Cell Transplantation Donor Selection.

机构信息

Clinical Persona Inc., East Palo Alto, California.

Telomere Diagnostics, Menlo Park, California.

出版信息

Biol Blood Marrow Transplant. 2018 Jun;24(6):1299-1306. doi: 10.1016/j.bbmt.2018.01.038. Epub 2018 Feb 2.

Abstract

The survival of patients undergoing hematopoietic cell transplantation (HCT) from unrelated donors for acute leukemia exhibits considerable variation, even after stringent genetic matching. To improve the donor selection process, we attempted to create an algorithm to quantify the likelihood of survival to 5 years after unrelated donor HCT for acute leukemia, based on the clinical characteristics of the donor selected. All standard clinical variables were included in the model, which also included average leukocyte telomere length of the donor based on its association with recipient survival in severe aplastic anemia, and links to multiple malignancies. We developed a multivariate classifier that assigned a Preferred or NotPreferred label to each prospective donor based on the survival of the recipient. In a previous analysis using a resampling method, recipients with donors labeled Preferred experienced clinically compelling better survival compared with those labeled NotPreferred by the test. However, in a pivotal validation study in an independent cohort of 522 patients, the overall survival of the Preferred and NotPreferred donor groups was not significantly different. Although machine learning approaches have successfully modeled other biological phenomena and have led to accurate predictive models, our attempt to predict HCT outcomes after unrelated donor transplantation was not successful.

摘要

异基因造血细胞移植(HCT)治疗急性白血病患者的存活率存在显著差异,即使在严格的遗传匹配后也是如此。为了改进供者选择过程,我们尝试根据选择的供者的临床特征,建立一种算法来量化异基因 HCT 后 5 年急性白血病患者的存活率。该模型纳入了所有标准的临床变量,还纳入了供者白细胞端粒长度平均值,因为它与重型再生障碍性贫血患者的受体存活率相关,并且与多种恶性肿瘤相关。我们开发了一种多变量分类器,根据受体的存活率,为每个潜在供者分配“首选”或“不首选”标签。在前一项使用重采样方法的分析中,与被标记为“不首选”的供者相比,被标记为“首选”的供者的受体具有更显著的临床生存获益。然而,在一项独立的 522 例患者队列的关键验证研究中,首选和不首选供者组的总生存率没有显著差异。尽管机器学习方法已经成功地模拟了其他生物学现象,并导致了准确的预测模型,但我们预测异基因无关供者移植后 HCT 结局的尝试并不成功。

相似文献

1
Evaluation of a Machine Learning-Based Prognostic Model for Unrelated Hematopoietic Cell Transplantation Donor Selection.
Biol Blood Marrow Transplant. 2018 Jun;24(6):1299-1306. doi: 10.1016/j.bbmt.2018.01.038. Epub 2018 Feb 2.
4
Alternative donor transplantation for adults with acute leukemia.
Best Pract Res Clin Haematol. 2014 Sep-Dec;27(3-4):272-7. doi: 10.1016/j.beha.2014.10.009. Epub 2014 Oct 15.
7
Outcomes from unrelated donor hematopoietic stem cell transplantation.
Cancer Control. 2011 Oct;18(4):216-21. doi: 10.1177/107327481101800402.
8
Development of an Unrelated Donor Selection Score Predictive of Survival after HCT: Donor Age Matters Most.
Biol Blood Marrow Transplant. 2018 May;24(5):1049-1056. doi: 10.1016/j.bbmt.2018.02.006. Epub 2018 Feb 14.

引用本文的文献

2
A gender specific risk assessment of coronary heart disease based on physical examination data.
NPJ Digit Med. 2023 Jul 31;6(1):136. doi: 10.1038/s41746-023-00887-8.
5
Machine Learning Applications in the Diagnosis of Benign and Malignant Hematological Diseases.
Clin Hematol Int. 2020 Dec 21;3(1):13-20. doi: 10.2991/chi.k.201130.001. eCollection 2021 Mar.
7
"Worldwide Network for Blood & Marrow Transplantation (WBMT) special article, challenges facing emerging alternate donor registries".
Bone Marrow Transplant. 2019 Aug;54(8):1179-1188. doi: 10.1038/s41409-019-0476-6. Epub 2019 Feb 18.
8
Artificial Intelligence Approaches in Hematopoietic Cell Transplantation: A Review of the Current Status and Future Directions.
Turk J Haematol. 2018 Aug 3;35(3):152-157. doi: 10.4274/tjh.2018.0123. Epub 2018 Jun 8.

本文引用的文献

1
3
Long telomeres and cancer risk among 95 568 individuals from the general population.
Int J Epidemiol. 2016 Oct;45(5):1634-1643. doi: 10.1093/ije/dyw179. Epub 2016 Aug 6.
6
Haploidentical hematopoietic transplantation from KIR ligand-mismatched donors with activating KIRs reduces nonrelapse mortality.
Blood. 2015 May 14;125(20):3173-82. doi: 10.1182/blood-2014-09-599993. Epub 2015 Mar 13.
8
Nonpermissive HLA-DPB1 mismatch increases mortality after myeloablative unrelated allogeneic hematopoietic cell transplantation.
Blood. 2014 Oct 16;124(16):2596-606. doi: 10.1182/blood-2014-05-576041. Epub 2014 Aug 26.
9
Cross-validation pitfalls when selecting and assessing regression and classification models.
J Cheminform. 2014 Mar 29;6(1):10. doi: 10.1186/1758-2946-6-10.
10
Effect of donor KIR2DL1 allelic polymorphism on the outcome of pediatric allogeneic hematopoietic stem-cell transplantation.
J Clin Oncol. 2013 Oct 20;31(30):3782-90. doi: 10.1200/JCO.2012.47.4007. Epub 2013 Sep 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验