Grogan Shawn P, Duffy Stuart F, Pauli Chantal, Lotz Martin K, D'Lima Darryl D
Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, California.
Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California.
J Orthop Res. 2018 Jul;36(7):1947-1958. doi: 10.1002/jor.23864. Epub 2018 Mar 14.
Avascular (Avas) meniscus regeneration remains a challenge, which is partly a consequence of our limited knowledge of the cells that maintain this tissue region. In this study, we utilized microarrays to characterize gene expression profiles of intact human Avas meniscus tissue and of cells following culture expansion. Using these data, we examined various 3D culture conditions to redifferentiate Avas cells toward the tissue phenotype. RNA was isolated from either the tissue directly or following cell isolation and 2 weeks in monolayer culture. RNA was hybridized on human genome arrays. Differentially expressed (DE) genes were identified by ranking analysis. DAVID pathway analysis was performed and visualized using STRING analysis. Quantitative PCR (qPCR) on additional donor menisci (tissues and cells) were used to validate array data. Avas cells cultured in 3D were subjected to qPCR to compare with the array-generated data. A total of 387 genes were DE based on differentiation state (>3-fold change; p < 0.01). In Avas-cultured cells, the upregulated pathways included focal adhesion, ECM-receptor interaction, regulation of actin cytoskeleton, and PDGF Signaling. In 3D-cultured Avas cells, TGFβ1 or combinations of TGFβ1 and BMP6 were most effective to promote an Avas tissue phenotype. THBS2 and THBS4 expression levels were identified as a means to denote meniscus cell phenotype status. We identified the key gene expression profiles, new markers and pathways involved in characterizing the Avas meniscus phenotype in the native state and during in vitro dedifferentiation and redifferentiation. These data served to screen 3D conditions to generate meniscus-like neotissues. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1947-1958, 2018.
无血管(Avas)半月板再生仍然是一项挑战,部分原因是我们对维持该组织区域的细胞了解有限。在本研究中,我们利用微阵列来表征完整的人类无血管半月板组织以及培养扩增后细胞的基因表达谱。利用这些数据,我们研究了各种三维培养条件,以使无血管细胞重新分化为组织表型。RNA 直接从组织中分离,或在细胞分离后经两周单层培养后分离。RNA 与人基因组阵列杂交。通过排名分析鉴定差异表达(DE)基因。使用 DAVID 通路分析并通过 STRING 分析进行可视化。对额外供体半月板(组织和细胞)进行定量 PCR(qPCR)以验证阵列数据。对在三维条件下培养的无血管细胞进行 qPCR,以与阵列生成的数据进行比较。基于分化状态(>3 倍变化;p < 0.01),共有 387 个基因发生差异表达。在无血管培养的细胞中,上调的通路包括粘着斑、细胞外基质 - 受体相互作用、肌动蛋白细胞骨架调节和血小板衍生生长因子信号传导。在三维培养的无血管细胞中,转化生长因子β1(TGFβ1)或 TGFβ1 与骨形态发生蛋白 6(BMP6)的组合最有效地促进无血管组织表型。血小板反应蛋白 2(THBS2)和血小板反应蛋白 4(THBS4)的表达水平被确定为表示半月板细胞表型状态的一种方式。我们鉴定了在天然状态以及体外去分化和再分化过程中表征无血管半月板表型所涉及的关键基因表达谱、新标记物和通路。这些数据有助于筛选三维条件以生成半月板样新组织。©2018 骨科研究协会。由威利期刊公司出版。《矫形外科研究杂志》36:1947 - 1958,2018 年。