Suppr超能文献

延迟 CT 对肾上腺良恶性病变的鉴别诊断:多因素分析和预测模型。

Differentiation of Malignant and Benign Adrenal Lesions With Delayed CT: Multivariate Analysis and Predictive Models.

机构信息

1 Department of Radiology, Unit 1473, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030.

2 Department of Biostatistics, University of Texas M.D. Anderson Cancer Center, Houston, TX.

出版信息

AJR Am J Roentgenol. 2018 Apr;210(4):W156-W163. doi: 10.2214/AJR.17.18428. Epub 2018 Feb 7.

Abstract

OBJECTIVE

The purpose of this study is to identify imaging and patient parameters that affect the diagnostic performance of delayed contrast-enhanced CT for distinguishing malignant from benign adrenal lesions larger than 1 cm in adult patients and to derive predictive models.

MATERIALS AND METHODS

This retrospective study assessed 97 pathologically proven adrenal lesions that had undergone unenhanced, portal venous, and 15-minute delayed CT. Quantitatively, single-parameter evaluations of lesion attenuation (in Hounsfield units) and absolute percentage enhancement washout (APEW) and relative percentage enhancement washout (RPEW) were performed. In addition, descriptive CT features (lesion size, margin definition, heterogeneity vs homogeneity, fat, and calcification) and patients' demographic characteristics and medical history of malignancy were evaluated for association with lesion status using multiple logistic regression with stepwise model selection. Areas under the ROC curve (A) were determined for univariate and multivariate analyses. Leave-one-lesion-out cross-validation was applied to ascertain the predictive performance of single-parameter and multivariate evaluations.

RESULTS

The A values for unenhanced attenuation, portal venous attenuation, delayed attenuation, APEW, and RPEW were 0.835, 0.534, 0.847, 0.792, and 0.871, respectively. Multivariate analyses revealed that portal venous attenuation, delayed attenuation, and APEW were significant features, with an A of 0.923 when combined. The addition of the descriptive CT features increased the A to 0.938; patient age and a history of malignancy were additional significant factors, increasing the A to 0.956 and 0.972, respectively. The combined predictive classifier yielded 89% accuracy under cross-validation, compared with the best commonly applied single-parameter evaluation (77% for RPEW < 40%).

CONCLUSION

Multivariate imaging evaluation applied to delayed contrast-enhanced CT alone, with or without patient characteristics, improves diagnostic performance for characterizing adrenal lesions beyond those of single-parameter evaluations. Predictive formulas assessing the probabilities of lesion benignity or malignancy are provided.

摘要

目的

本研究旨在确定影响成人患者大于 1cm 良恶性肾上腺病变的延迟对比增强 CT 诊断性能的影像学和患者参数,并建立预测模型。

材料和方法

本回顾性研究评估了 97 例经病理证实的肾上腺病变,这些病变均进行了未增强、门静脉期和 15 分钟延迟 CT 检查。定量评估病变衰减值(HU)、绝对增强洗脱百分比(APEW)和相对增强洗脱百分比(RPEW)。此外,还评估了描述性 CT 特征(病变大小、边界定义、异质性与均匀性、脂肪和钙化)以及患者的恶性肿瘤病史和人口统计学特征,使用逐步模型选择的多变量逻辑回归分析与病变状态的相关性。绘制受试者工作特征曲线(ROC)下面积(A),进行单变量和多变量分析。采用留一病变交叉验证法确定单变量和多变量评价的预测性能。

结果

未增强衰减值、门静脉期衰减值、延迟衰减值、APEW 和 RPEW 的 AUC 值分别为 0.835、0.534、0.847、0.792 和 0.871。多变量分析显示门静脉期衰减值、延迟衰减值和 APEW 是重要特征,联合后 AUC 值为 0.923。增加描述性 CT 特征后,AUC 值增加到 0.938;患者年龄和恶性肿瘤病史是另外两个重要因素,分别将 AUC 值提高到 0.956 和 0.972。交叉验证下,联合预测分类器的准确率为 89%,优于最佳常用单参数评估(RPEW<40%时为 77%)。

结论

单独应用延迟对比增强 CT 的多变量成像评估,无论是否结合患者特征,均能提高良恶性肾上腺病变的诊断性能,优于单参数评估。还提供了评估病变良恶性概率的预测公式。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验