Suppr超能文献

蛋白质-蛋白质相互作用的对接结构预测:在生物医学问题中的应用。

Structural Prediction of Protein-Protein Interactions by Docking: Application to Biomedical Problems.

机构信息

Barcelona Supercomputing Center (BSC), Barcelona, Spain.

Barcelona Supercomputing Center (BSC), Barcelona, Spain; Institut de Biologia Molecular de Barcelona, CSIC, Barcelona, Spain.

出版信息

Adv Protein Chem Struct Biol. 2018;110:203-249. doi: 10.1016/bs.apcsb.2017.06.003. Epub 2017 Aug 31.

Abstract

A huge amount of genetic information is available thanks to the recent advances in sequencing technologies and the larger computational capabilities, but the interpretation of such genetic data at phenotypic level remains elusive. One of the reasons is that proteins are not acting alone, but are specifically interacting with other proteins and biomolecules, forming intricate interaction networks that are essential for the majority of cell processes and pathological conditions. Thus, characterizing such interaction networks is an important step in understanding how information flows from gene to phenotype. Indeed, structural characterization of protein-protein interactions at atomic resolution has many applications in biomedicine, from diagnosis and vaccine design, to drug discovery. However, despite the advances of experimental structural determination, the number of interactions for which there is available structural data is still very small. In this context, a complementary approach is computational modeling of protein interactions by docking, which is usually composed of two major phases: (i) sampling of the possible binding modes between the interacting molecules and (ii) scoring for the identification of the correct orientations. In addition, prediction of interface and hot-spot residues is very useful in order to guide and interpret mutagenesis experiments, as well as to understand functional and mechanistic aspects of the interaction. Computational docking is already being applied to specific biomedical problems within the context of personalized medicine, for instance, helping to interpret pathological mutations involved in protein-protein interactions, or providing modeled structural data for drug discovery targeting protein-protein interactions.

摘要

由于测序技术的最新进展和更大的计算能力,大量的遗传信息是可用的,但在表型水平上解释这种遗传数据仍然难以捉摸。原因之一是蛋白质不是单独作用,而是专门与其他蛋白质和生物分子相互作用,形成复杂的相互作用网络,这些网络对大多数细胞过程和病理条件都是必不可少的。因此,描述这种相互作用网络是理解信息如何从基因传递到表型的重要步骤。事实上,在原子分辨率下对蛋白质-蛋白质相互作用进行结构特征描述在生物医学中有许多应用,从诊断和疫苗设计到药物发现。然而,尽管实验结构测定有了进展,但具有结构数据的相互作用数量仍然非常少。在这种情况下,通过对接进行蛋白质相互作用的计算建模是一种互补的方法,对接通常由两个主要阶段组成:(i)相互作用分子之间可能的结合模式的采样,(ii)用于识别正确取向的评分。此外,预测界面和热点残基对于指导和解释诱变实验以及理解相互作用的功能和机制方面非常有用。计算对接已经在个性化医学的背景下应用于特定的生物医学问题,例如,帮助解释涉及蛋白质-蛋白质相互作用的病理突变,或为针对蛋白质-蛋白质相互作用的药物发现提供建模结构数据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验