Suppr超能文献

蛋白质-蛋白质对接:从相互作用到相互作用组

Protein-protein docking: from interaction to interactome.

作者信息

Vakser Ilya A

机构信息

Center for Bioinformatics and Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas.

出版信息

Biophys J. 2014 Oct 21;107(8):1785-1793. doi: 10.1016/j.bpj.2014.08.033.

Abstract

The protein-protein docking problem is one of the focal points of activity in computational biophysics and structural biology. The three-dimensional structure of a protein-protein complex, generally, is more difficult to determine experimentally than the structure of an individual protein. Adequate computational techniques to model protein interactions are important because of the growing number of known protein structures, particularly in the context of structural genomics. Docking offers tools for fundamental studies of protein interactions and provides a structural basis for drug design. Protein-protein docking is the prediction of the structure of the complex, given the structures of the individual proteins. In the heart of the docking methodology is the notion of steric and physicochemical complementarity at the protein-protein interface. Originally, mostly high-resolution, experimentally determined (primarily by x-ray crystallography) protein structures were considered for docking. However, more recently, the focus has been shifting toward lower-resolution modeled structures. Docking approaches have to deal with the conformational changes between unbound and bound structures, as well as the inaccuracies of the interacting modeled structures, often in a high-throughput mode needed for modeling of large networks of protein interactions. The growing number of docking developers is engaged in the community-wide assessments of predictive methodologies. The development of more powerful and adequate docking approaches is facilitated by rapidly expanding information and data resources, growing computational capabilities, and a deeper understanding of the fundamental principles of protein interactions.

摘要

蛋白质-蛋白质对接问题是计算生物物理学和结构生物学研究的重点之一。一般来说,蛋白质-蛋白质复合物的三维结构比单个蛋白质的结构更难通过实验确定。由于已知蛋白质结构的数量不断增加,尤其是在结构基因组学的背景下,用于模拟蛋白质相互作用的适当计算技术变得至关重要。对接为蛋白质相互作用的基础研究提供了工具,并为药物设计提供了结构基础。蛋白质-蛋白质对接是在已知单个蛋白质结构的情况下预测复合物的结构。对接方法的核心是蛋白质-蛋白质界面处的空间和物理化学互补性概念。最初,对接主要考虑高分辨率、通过实验确定(主要通过X射线晶体学)的蛋白质结构。然而,最近,重点已转向低分辨率的模型结构。对接方法必须处理未结合和结合结构之间的构象变化,以及相互作用的模型结构的不准确性,通常需要以高通量模式来模拟大型蛋白质相互作用网络。越来越多的对接开发者参与了对预测方法的全社区评估。快速扩展的信息和数据资源、不断增长的计算能力以及对蛋白质相互作用基本原理的更深入理解,推动了更强大、更合适的对接方法的发展。

相似文献

1
Protein-protein docking: from interaction to interactome.
Biophys J. 2014 Oct 21;107(8):1785-1793. doi: 10.1016/j.bpj.2014.08.033.
2
Predicting 3D structures of protein-protein complexes.
Curr Pharm Biotechnol. 2008 Apr;9(2):57-66. doi: 10.2174/138920108783955209.
3
Modeling complexes of modeled proteins.
Proteins. 2017 Mar;85(3):470-478. doi: 10.1002/prot.25183. Epub 2016 Oct 24.
4
5
Simulated unbound structures for benchmarking of protein docking in the DOCKGROUND resource.
BMC Bioinformatics. 2015 Jul 31;16(1):243. doi: 10.1186/s12859-015-0672-3.
6
Defining the limits of homology modeling in information-driven protein docking.
Proteins. 2013 Dec;81(12):2119-28. doi: 10.1002/prot.24382. Epub 2013 Oct 17.
9
Structural quality of unrefined models in protein docking.
Proteins. 2017 Jan;85(1):39-45. doi: 10.1002/prot.25188. Epub 2016 Nov 13.
10
Low-resolution structural modeling of protein interactome.
Curr Opin Struct Biol. 2013 Apr;23(2):198-205. doi: 10.1016/j.sbi.2012.12.003. Epub 2013 Jan 5.

引用本文的文献

1
From Concepts to Inhibitors: A Blueprint for Targeting Protein-Protein Interactions.
Chem Rev. 2025 Jul 23;125(14):6819-6869. doi: 10.1021/acs.chemrev.5c00046. Epub 2025 Jun 24.
2
3
Recent progress and future challenges in structure-based protein-protein interaction prediction.
Mol Ther. 2025 May 7;33(5):2252-2268. doi: 10.1016/j.ymthe.2025.04.003. Epub 2025 Apr 6.
4
Highly Optimized Simulation of Atomic Resolution Cell-Like Protein Environment.
J Phys Chem B. 2025 Mar 27;129(12):3183-3190. doi: 10.1021/acs.jpcb.4c07769. Epub 2025 Mar 12.
5
Identification and Validation of B-Cell Epitopes on the VP1 Protein of Parvovirus B19 through Molecular Docking and Dynamics Simulation.
ACS Omega. 2025 Jan 24;10(4):3598-3609. doi: 10.1021/acsomega.4c08353. eCollection 2025 Feb 4.
6
A comprehensive survey of scoring functions for protein docking models.
BMC Bioinformatics. 2025 Jan 22;26(1):25. doi: 10.1186/s12859-024-05991-4.
7
Should Artificial Intelligence Play a Durable Role in Biomedical Research and Practice?
Int J Mol Sci. 2024 Dec 13;25(24):13371. doi: 10.3390/ijms252413371.
8
Transmembrane proteins in grape immunity: current knowledge and methodological advances.
Front Plant Sci. 2024 Dec 20;15:1515163. doi: 10.3389/fpls.2024.1515163. eCollection 2024.
9
10
Network pharmacology and experimental study of Angelica sinensis and Astragalus membranaceus capsules in treating heart failure.
Heliyon. 2024 Oct 4;10(20):e38851. doi: 10.1016/j.heliyon.2024.e38851. eCollection 2024 Oct 30.

本文引用的文献

1
Template-based structure modeling of protein-protein interactions.
Curr Opin Struct Biol. 2014 Feb;24:10-23. doi: 10.1016/j.sbi.2013.11.005. Epub 2013 Dec 11.
2
3
Trends in structural coverage of the protein universe and the impact of the Protein Structure Initiative.
Proc Natl Acad Sci U S A. 2014 Mar 11;111(10):3733-8. doi: 10.1073/pnas.1321614111. Epub 2014 Feb 24.
4
Critical assessment of methods of protein structure prediction (CASP)--round x.
Proteins. 2014 Feb;82 Suppl 2(0 2):1-6. doi: 10.1002/prot.24452. Epub 2013 Dec 17.
5
Coarse-grain modelling of protein-protein interactions.
Curr Opin Struct Biol. 2013 Dec;23(6):878-86. doi: 10.1016/j.sbi.2013.09.004. Epub 2013 Oct 27.
6
Docking, scoring, and affinity prediction in CAPRI.
Proteins. 2013 Dec;81(12):2082-95. doi: 10.1002/prot.24428. Epub 2013 Oct 17.
7
Protein-protein interaction networks: the puzzling riches.
Curr Opin Struct Biol. 2013 Dec;23(6):941-53. doi: 10.1016/j.sbi.2013.08.002. Epub 2013 Sep 2.
8
Structural templates for modeling homodimers.
Protein Sci. 2013 Nov;22(11):1655-63. doi: 10.1002/pro.2361. Epub 2013 Sep 20.
9
Global and local structural similarity in protein-protein complexes: implications for template-based docking.
Proteins. 2013 Dec;81(12):2137-42. doi: 10.1002/prot.24392. Epub 2013 Oct 17.
10
Protein models: the Grand Challenge of protein docking.
Proteins. 2014 Feb;82(2):278-87. doi: 10.1002/prot.24385. Epub 2013 Oct 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验