Schubeis Tobias, Le Marchand Tanguy, Andreas Loren B, Pintacuda Guido
Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France.
Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany.
J Magn Reson. 2018 Feb;287:140-152. doi: 10.1016/j.jmr.2017.11.014.
Building on a decade of continuous advances of the community, the recent development of very fast (60 kHz and above) magic-angle spinning (MAS) probes has revolutionised the field of solid-state NMR. This new spinning regime reduces the H-H dipolar couplings, so that direct detection of the larger magnetic moment available from H is now possible at high resolution, not only in deuterated molecules but also in fully-protonated substrates. Such capabilities allow rapid "fingerprinting" of samples with a ten-fold reduction of the required sample amounts with respect to conventional approaches, and permit extensive, robust and expeditious assignment of small-to-medium sized proteins (up to ca. 300 residues), and the determination of inter-nuclear proximities, relative orientations of secondary structural elements, protein-cofactor interactions, local and global dynamics. Fast MAS and H detection techniques have nowadays been shown to be applicable to membrane-bound systems. This paper reviews the strategies underlying this recent leap forward in sensitivity and resolution, describing its potential for the detailed characterization of membrane proteins.
基于该领域十年来的持续进步,近期超快速(60kHz及以上)魔角旋转(MAS)探头的发展彻底改变了固态核磁共振领域。这种新的旋转方式减少了H-H偶极耦合,因此现在不仅可以在氘代分子中,而且可以在完全质子化的底物中以高分辨率直接检测来自H的更大磁矩。这些能力使得能够对样品进行快速“指纹识别”,相对于传统方法所需样品量减少了十倍,并且允许对中小型蛋白质(多达约300个残基)进行广泛、可靠和快速的归属,以及确定核间距离、二级结构元件的相对取向、蛋白质-辅因子相互作用、局部和整体动力学。如今,快速MAS和H检测技术已被证明适用于膜结合系统。本文回顾了这一近期在灵敏度和分辨率方面取得飞跃的潜在策略,描述了其对膜蛋白进行详细表征的潜力。