Majewski Kurt
Siemens AG, CT RDA BAM ORD-DE, 80200 Munich, Germany.
J Magn Reson. 2018 Mar;288:43-57. doi: 10.1016/j.jmr.2018.01.005.
Exact solutions of the Bloch equations with T- and T-relaxation terms for piecewise constant magnetic fields are numerically challenging. We therefore investigate an approximation for the achieved magnetization in which rotations and relaxations are split into separate operations. We develop an estimate for its accuracy and explicit first and second order derivatives with respect to the complex excitation radio frequency voltages. In practice, the deviation between an exact solution of the Bloch equations and this rotation relaxation splitting approximation seems negligible. Its computation times are similar to exact solutions without relaxation terms. We apply the developed theory to numerically optimize radio frequency excitation waveforms with T- and T-relaxations in several examples.
对于具有T1和T2弛豫项的分段恒定磁场,布洛赫方程的精确解在数值计算上具有挑战性。因此,我们研究了一种对所实现磁化强度的近似方法,其中旋转和弛豫被分解为单独的操作。我们针对其精度以及相对于复激励射频电压的显式一阶和二阶导数进行了估计。在实际应用中,布洛赫方程的精确解与这种旋转弛豫分裂近似之间的偏差似乎可以忽略不计。其计算时间与没有弛豫项的精确解相似。我们将所发展的理论应用于在几个示例中对具有T1和T2弛豫的射频激励波形进行数值优化。