Majewski Kurt
Siemens AG, T RDA BAM ORD-DE, Munich 80200, Germany.
J Magn Reson. 2021 May;326:106941. doi: 10.1016/j.jmr.2021.106941. Epub 2021 Feb 19.
We consider an excitation pulse with piecewise constant gradient trajectories and radio frequency (RF) waveforms such that the solution of the Bloch equations without relaxation terms can be represented by rotations. Based on this analytic solution we formulate a non-linear program for finding sub-pulse durations, gradient strengths, and complex RF voltages which minimize the deviation between the achieved and desired magnetization. We develop explicit expressions for the first and second order derivatives of the objective function. We extend the non-linear program to precisely account for gradient slew rate constraints. Using an interior point solver we apply the developed theory to simultaneously optimize the positions of k-points, their associated RF voltages and durations.
我们考虑一个具有分段恒定梯度轨迹和射频(RF)波形的激发脉冲,使得无弛豫项的布洛赫方程的解可以用旋转来表示。基于此解析解,我们制定了一个非线性规划,用于寻找子脉冲持续时间、梯度强度和复射频电压,以最小化实际磁化与期望磁化之间的偏差。我们推导了目标函数一阶和二阶导数的显式表达式。我们扩展了非线性规划,以精确考虑梯度 slew 率约束。使用内点求解器,我们应用所发展的理论来同时优化 k 点的位置、其相关的射频电压和持续时间。