Suppr超能文献

酶如何从振荡电场中捕获并传递自由能。

How enzymes can capture and transmit free energy from an oscillating electric field.

作者信息

Westerhoff H V, Tsong T Y, Chock P B, Chen Y D, Astumian R D

出版信息

Proc Natl Acad Sci U S A. 1986 Jul;83(13):4734-8. doi: 10.1073/pnas.83.13.4734.

Abstract

Recently, it has been demonstrated that free energy from an alternating electric field can drive the active transport of Rb+ by way of the Na+, K+-ATPase. In the present work, it is shown why many transmembrane enzymes can be expected to absorb free energy from an oscillating electric field and transduce that to chemical or transport work. In the theoretical analysis it turned out to be sufficient that (i) the catalytic process be accompanied by either net or cyclic charge translocation across the membrane and (ii) the stability of the enzyme states involved be asymmetric. Calculations based on a four-state model reveal that free-energy transduction occurs with sinusoidal, square-wave, and positive-only oscillating electric fields and for cases that exhibit either linear or exponential field-dependent rate constants. The results suggest that in addition to oscillating electric field-driven transport, the proposed mechanism can also be used to explain, in part, the "missing" free energy term in the cases in which ATP synthesis has been observed with insufficient transmembrane proton electrochemical potential difference.

摘要

最近,已经证明交变电场的自由能可以通过钠钾ATP酶驱动铷离子的主动运输。在目前的工作中,展示了为什么可以预期许多跨膜酶能够从振荡电场吸收自由能,并将其转化为化学或运输功。在理论分析中发现,(i)催化过程伴随着跨膜的净电荷或循环电荷转运,以及(ii)所涉及的酶状态的稳定性不对称,就足够了。基于四态模型的计算表明,自由能转导发生在正弦、方波和仅正向振荡的电场中,以及表现出线性或指数场依赖速率常数的情况下。结果表明,除了振荡电场驱动的运输外,所提出的机制还可以部分地解释在观察到ATP合成时跨膜质子电化学势差不足的情况下“缺失”的自由能项。

相似文献

1
How enzymes can capture and transmit free energy from an oscillating electric field.
Proc Natl Acad Sci U S A. 1986 Jul;83(13):4734-8. doi: 10.1073/pnas.83.13.4734.
3
Recognition and processing of randomly fluctuating electric signals by Na,K-ATPase.
Biophys J. 1994 Sep;67(3):1247-51. doi: 10.1016/S0006-3495(94)80594-6.
6
Michaelis-Menten equation for an enzyme in an oscillating electric field.
Biophys J. 1990 Oct;58(4):969-74. doi: 10.1016/S0006-3495(90)82441-3.
8
Ion channel enzyme in an oscillating electric field.
J Membr Biol. 1992 Mar;126(2):137-45. doi: 10.1007/BF00231912.
9
A mechanism for action of oscillating electric fields on cells.
Biochem Biophys Res Commun. 2000 Jun 16;272(3):634-40. doi: 10.1006/bbrc.2000.2746.

引用本文的文献

1
Feedback driven autonomous cycles of assembly and disassembly from minimal building blocks.
Nat Commun. 2024 Nov 18;15(1):9980. doi: 10.1038/s41467-024-54197-y.
2
On Having No Head: Cognition throughout Biological Systems.
Front Psychol. 2016 Jun 21;7:902. doi: 10.3389/fpsyg.2016.00902. eCollection 2016.
3
Autonomous pump against concentration gradient.
Sci Rep. 2016 Mar 21;6:23414. doi: 10.1038/srep23414.
4
Unreliable gut feelings can lead to correct decisions: the somatic marker hypothesis in non-linear decision chains.
Front Psychol. 2012 Oct 9;3:384. doi: 10.3389/fpsyg.2012.00384. eCollection 2012.
5
Biological proton pumping in an oscillating electric field.
Phys Rev Lett. 2009 Dec 31;103(26):268102. doi: 10.1103/PhysRevLett.103.268102. Epub 2009 Dec 29.
6
Nonlinear dielectric spectroscopy for label-free detection of respiratory activity in whole cells.
Biosens Bioelectron. 2010 May 15;25(9):2107-14. doi: 10.1016/j.bios.2010.02.013. Epub 2010 Feb 24.
7
Cancer proliferation and therapy: the Warburg effect and quantum metabolism.
Theor Biol Med Model. 2010 Jan 19;7:2. doi: 10.1186/1742-4682-7-2.
8
Non-linear dielectric spectroscopy of microbiological suspensions.
Biomed Eng Online. 2009 Sep 22;8:19. doi: 10.1186/1475-925X-8-19.
9
Quantum metabolism explains the allometric scaling of metabolic rates.
J R Soc Interface. 2010 Mar 6;7(44):507-14. doi: 10.1098/rsif.2009.0310. Epub 2009 Sep 4.
10
Control analysis for autonomously oscillating biochemical networks.
Biophys J. 2002 Jan;82(1 Pt 1):99-108. doi: 10.1016/S0006-3495(02)75377-0.

本文引用的文献

1
Parametric Pumping: Separation of Mixture of Toluene and n-Heptane.
Science. 1968 Feb 2;159(3814):522-4. doi: 10.1126/science.159.3814.522.
2
Voltage modulation of membrane permeability and energy utilization in cells.
Biosci Rep. 1983 Jun;3(6):487-505. doi: 10.1007/BF01120693.
3
Dipoles of the alpha-helix and beta-sheet: their role in protein folding.
Nature. 1981 Dec 10;294(5841):532-6. doi: 10.1038/294532a0.
4
Energy transfer and molecular switching II. Muscle contraction and enzymatic reactions.
J Theor Biol. 1982 Nov 21;99(2):293-307. doi: 10.1016/0022-5193(82)90006-6.
5
The localized delta muH+ problem. The possible role of the local electric field in ATP synthesis.
FEBS Lett. 1982 Sep 6;146(1):1-4. doi: 10.1016/0014-5793(82)80692-3.
10
Molecular slipping in redox and ATPase H+ pumps.
Biochim Biophys Acta. 1983 May 27;723(2):317-21. doi: 10.1016/0005-2728(83)90131-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验