Suppr超能文献

基于病毒的纳米材料用于等离子体和光子材料与器件。

Viral-based nanomaterials for plasmonic and photonic materials and devices.

机构信息

Department of Chemistry, McGill University, Montreal, Canada.

出版信息

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018 Jul;10(4):e1508. doi: 10.1002/wnan.1508. Epub 2018 Feb 8.

Abstract

Over the last decade, viruses have established themselves as a powerful tool in nanotechnology. Their proteinaceous capsids benefit from biocompatibility, chemical addressability, and a variety of sizes and geometries, while their ability to encapsulate, scaffold, and self-assemble enables their use for a wide array of purposes. Moreover, the scaling up of viral-based nanotechnologies is facilitated by high capsid production yield and speed, which is particularly advantageous when compared with slower and costlier lithographic techniques. These features enable the bottom-up fabrication of photonic and plasmonic materials, which relies on the precise arrangement of photoactive material at the nanoscale to control phenomena such as electromagnetic wave propagation and energy transfer. The interdisciplinary approach required for the fabrication of such materials combines techniques from the life sciences and device engineering, thus promoting innovative research. Materials with applications spanning the fields of sensing (biological, chemical, and physical sensors), nanomedicine (cellular imaging, drug delivery, phototherapy), energy transfer and conversion (solar cells, light harvesting, photocatalysis), metamaterials (negative refraction, artificial magnetism, near-field amplification), and nanoparticle synthesis are considered with exclusive emphasis on viral capsids and protein cages. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.

摘要

在过去的十年中,病毒已成为纳米技术领域的有力工具。它们的蛋白质外壳具有生物相容性、化学可寻址性和多种尺寸与形状,同时还具有封装、支架和自组装的能力,这使得它们能够应用于广泛的领域。此外,高产量和高速度的病毒基纳米技术的规模化生产,与较慢且成本较高的光刻技术相比具有特别的优势。这些特性使基于病毒的技术能够实现光子和等离子体材料的自下而上的制造,这种制造依赖于光活性材料在纳米尺度上的精确排列来控制诸如电磁波传播和能量传递等现象。制造此类材料所需的跨学科方法结合了生命科学和器件工程的技术,从而促进了创新性研究。具有传感(生物、化学和物理传感器)、纳米医学(细胞成像、药物输送、光疗)、能量传递和转换(太阳能电池、光捕获、光催化)、超材料(负折射、人工磁性、近场放大)和纳米颗粒合成等领域应用的材料都被考虑在内,其中特别强调了病毒衣壳和蛋白笼。本文属于以下分类:生物启发型纳米材料 > 基于蛋白质和病毒的结构。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验