Soils Department, Faculty of Agriculture, Mansoura University, 35516 Mansoura, Egypt.
Soils Department, Faculty of Agriculture, Mansoura University, 35516 Mansoura, Egypt.
Chemosphere. 2018 May;198:351-363. doi: 10.1016/j.chemosphere.2018.01.113. Epub 2018 Feb 1.
This paper provides a circular win-win approach for recycling rhizofiltration biomass into multifunctional engineered biochar for various environmental applications (e.g. phosphate recovery) with a potential reuse of the exhausted biochar as an enriched soil amendment. Functionalized biochars were derived from the disposals of water hyacinth (Eichhornia crassipes) plants grown in synthetic contaminated water spiked with either Fe (Fe-B), Mn (Mn-B), Zn (Zn-B) or Cu (Cu-B) comparing with the original drainage water as a control treatment (O-B). The in-situ functionalization of biochar via the inherently heavy metal-rich feedstock produced homogenous organo-mineral complexes on biochar matrix without environmental hazards (e.g. volatilization or chemical sludge formation) associated with other post-synthetic functionalization methods. Physicochemical analyses (SEM-EDS, XRD, FTIR, BET and zeta potential (ζ)) confirmed the functionalization of Fe-B, Zn-B and Cu-B due to organo-mineral complexes formation, maximizing specific surface area, lowering the electronegativity, originating positively charged functional groups, and thus improving the anion exchange capacity (AEC) comparing with O-B. In contrary, physicochemical characteristics of Mn-B was in similarity with those of O-B. Phosphate recovery by the functionalized biochar was much greater than that of the unfunctionalized forms (O-B and Mn-B). Precipitation was the dominant chemisorption mechanisms for phosphate sorption onto biochar compared to other mechanisms (ion exchange, electrostatic attraction and complexation with active functional groups). The exhausted biochar showed an ameliorating effect on the low water and nutrient supply potentials of sandy soil, and thus improved fresh biomass yield and nutritional status of maize seedlings with some restrictions on its high micronutrient content.
本文提供了一种循环双赢的方法,可将根际过滤生物量回收再利用为多功能工程生物炭,用于各种环境应用(例如回收磷酸盐),同时将耗尽的生物炭作为富含有机质的土壤改良剂进行潜在再利用。功能化生物炭是由在合成受污染的水中生长的水葫芦( Eichhornia crassipes )植物的处置物衍生而来,该水含有 Fe(Fe-B)、Mn(Mn-B)、Zn(Zn-B)或 Cu(Cu-B),与原始排水相比作为对照处理(O-B)。通过固有富含重金属的原料在生物炭基质上原位功能化,产生均匀的有机-矿物复合物,而没有与其他后合成功能化方法相关的环境危害(例如挥发或化学污泥形成)。物理化学分析(SEM-EDS、XRD、FTIR、BET 和 ζ 电位(ζ))证实了 Fe-B、Zn-B 和 Cu-B 的功能化,这是由于有机-矿物复合物的形成,使比表面积最大化,降低电负性,产生带正电荷的官能团,从而提高阴离子交换容量(AEC),与 O-B 相比。相反,Mn-B 的物理化学特性与 O-B 相似。与未功能化的形式(O-B 和 Mn-B)相比,功能化生物炭对磷酸盐的回收要大得多。与其他机制(离子交换、静电吸引和与活性官能团络合)相比,沉淀是磷酸盐在生物炭上吸附的主要化学吸附机制。耗尽的生物炭对沙土的低水分和养分供应潜力表现出改良作用,从而提高了玉米幼苗的鲜生物量产量和营养状况,但对其高微量元素含量存在一些限制。