Suppr超能文献

[为什么选择质子治疗?以及如何进行?]

[Why proton therapy? And how?].

作者信息

Thariat Juliette, Habrand Jean Louis, Lesueur Paul, Chaikh Abdulhamid, Kammerer Emmanuel, Lecomte Delphine, Batalla Alain, Balosso Jacques, Tessonnier Thomas

机构信息

Centre François-Baclesse, Department of Radiation Oncology, 3, avenue General-Harris, 14000 Caen, France; Unicaen, Normandie université, laboratoire de physique corpusculaire IN2P3/ENSICAEN, UMR6534, boulevard du Marechal-Juin, 14050 Caen, France.

Centre François-Baclesse, Department of Radiation Oncology, 3, avenue General-Harris, 14000 Caen, France.

出版信息

Bull Cancer. 2018 Mar;105(3):315-326. doi: 10.1016/j.bulcan.2017.12.004.

Abstract

Proton therapy is a radiotherapy, based on the use of protons, charged subatomic particles that stop at a given depth depending on their initial energy (pristine Bragg peak), avoiding any output beam, unlike the photons used in most of the other modalities of radiotherapy. Proton therapy has been used for 60 years, but has only become ubiquitous in the last decade because of recent major advances in particle accelerator technology. This article reviews the history of clinical implementation of protons, the nature of the technological advances that now allows its expansion at a lower cost. It also addresses the technical and physical specificities of proton therapy and the clinical situations for which proton therapy may be relevant but requires evidence. Different proton therapy techniques are possible. These are explained in terms of their clinical potential by explaining the current terminology (such as cyclotrons, synchrotrons or synchrocyclotrons, using superconducting magnets, fixed line or arm rotary with passive diffusion delivery or active by scanning) in basic words. The requirements associated with proton therapy are increased due to the precision of the depth dose deposit. The learning curve of proton therapy requires that clinical indications be prioritized according to their associated uncertainties (such as range uncertainties and movement in lung tumors). Many clinical indications potentially fall under proton therapy ultimately. Clinical strategies are explained in a paralleled manuscript.

摘要

质子治疗是一种放射治疗方法,它基于质子的使用,质子是带电荷的亚原子粒子,根据其初始能量在特定深度处停止(原始布拉格峰),与大多数其他放射治疗方式中使用的光子不同,它不会产生任何出射束。质子治疗已经使用了60年,但由于粒子加速器技术最近的重大进展,在过去十年才变得普遍。本文回顾了质子临床应用的历史、目前使其能够以较低成本扩展的技术进步的本质。它还阐述了质子治疗的技术和物理特性以及质子治疗可能适用但需要证据的临床情况。有多种质子治疗技术。通过用基本术语解释当前的术语(如回旋加速器、同步加速器或同步回旋加速器,使用超导磁体,固定束线或臂旋转,采用被动散射递送或扫描主动递送)来根据其临床潜力对这些技术进行解释。由于深度剂量沉积的精确性,与质子治疗相关的要求有所增加。质子治疗的学习曲线要求根据其相关的不确定性(如肺部肿瘤中的射程不确定性和运动)对临床适应症进行优先排序。最终,许多临床适应症可能都属于质子治疗的范畴。临床策略将在一篇平行的手稿中进行解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验