Suppr超能文献

通过蒸汽爆破预处理与纤维素分解菌生物强化相结合提高木质纤维素生物质的甲烷产量

Enhancing methane production from lignocellulosic biomass by combined steam-explosion pretreatment and bioaugmentation with cellulolytic bacterium .

作者信息

Mulat Daniel Girma, Huerta Silvia Greses, Kalyani Dayanand, Horn Svein Jarle

机构信息

1Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O.Box 5003, 1432 Ås, Norway.

2Department of Chemical Engineering, University of Valencia, P.O.Box 46100, Valencia, Spain.

出版信息

Biotechnol Biofuels. 2018 Jan 29;11:19. doi: 10.1186/s13068-018-1025-z. eCollection 2018.

Abstract

BACKGROUND

Biogas production from lignocellulosic biomass is generally considered to be challenging due to the recalcitrant nature of this biomass. In this study, the recalcitrance of birch was reduced by applying steam-explosion (SE) pretreatment (210 °C and 10 min). Moreover, bioaugmentation with the cellulolytic bacterium was applied to possibly enhance the methane production from steam-exploded birch in an anaerobic digestion (AD) process under thermophilic conditions (62 °C).

RESULTS

Overall, the combined SE and bioaugmentation enhanced the methane yield up to 140% compared to untreated birch, while SE alone contributed to the major share of methane enhancement by 118%. The best methane improvement of 140% on day 50 was observed in bottles fed with pretreated birch and bioaugmentation with lower dosages of (2 and 5% of inoculum volume). The maximum methane production rate also increased from 4-mL CH/g VS (volatile solids)/day for untreated birch to 9-14-mL CH/g VS/day for steam-exploded birch with applied bioaugmentation. Bioaugmentation was particularly effective for increasing the initial methane production rate of the pretreated birch yielding 21-44% more methane than the pretreated birch without applied bioaugmentation. The extent of solubilization of the organic matter was increased by more than twofold when combined SE pretreatment and bioaugmentation was used in comparison with the methane production from untreated birch. The beneficial effects of SE and bioaugmentation on methane yield indicated that biomass recalcitrance and hydrolysis step are the limiting factors for efficient AD of lignocellulosic biomass. Microbial community analysis by 16S rRNA amplicon sequencing showed that the microbial community composition was altered by the pretreatment and bioaugmentation processes. Notably, the enhanced methane production by pretreatment and bioaugmentation was well correlated with the increase in abundance of key bacterial and archaeal communities, particularly the hydrolytic bacterium , several members of syntrophic acetate oxidizing bacteria and the hydrogenotrophic .

CONCLUSION

Our findings demonstrate the potential of combined SE and bioaugmentation for enhancing methane production from lignocellulosic biomass.

摘要

背景

由于木质纤维素生物质的顽固性,利用其生产沼气通常被认为具有挑战性。在本研究中,通过蒸汽爆破(SE)预处理(210°C和10分钟)降低了桦木的顽固性。此外,应用纤维素分解细菌进行生物强化,以在嗜热条件(62°C)下的厌氧消化(AD)过程中可能提高蒸汽爆破桦木的甲烷产量。

结果

总体而言,与未处理的桦木相比,SE和生物强化相结合使甲烷产量提高了140%,而单独的SE对甲烷产量提高的贡献占主要部分,为118%。在接种较低剂量(接种体积的2%和5%)的预处理桦木并进行生物强化的瓶中,在第50天观察到甲烷产量提高了140%,效果最佳。最大甲烷产生速率也从未处理桦木的4 mL CH₄/g VS(挥发性固体)/天增加到应用生物强化的蒸汽爆破桦木的9 - 14 mL CH₄/g VS/天。生物强化对于提高预处理桦木的初始甲烷产生速率特别有效,比未应用生物强化的预处理桦木产生的甲烷多21% - 44%。与未处理桦木的甲烷产量相比,当联合使用SE预处理和生物强化时,有机物的溶解程度增加了两倍多。SE和生物强化对甲烷产量的有益影响表明,生物质顽固性和水解步骤是木质纤维素生物质高效厌氧消化的限制因素。通过16S rRNA扩增子测序进行的微生物群落分析表明,预处理和生物强化过程改变了微生物群落组成。值得注意的是,预处理和生物强化导致的甲烷产量增加与关键细菌和古细菌群落丰度的增加密切相关,特别是水解细菌、互营乙酸氧化细菌的几个成员和氢营养型古菌。

结论

我们的研究结果证明了联合SE和生物强化提高木质纤维素生物质甲烷产量的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验