文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

KKU-MC1 纤维素分解微生物共生体的分类学和酶学基础及其在提高生物甲烷生产中的应用。

Taxonomic and enzymatic basis of the cellulolytic microbial consortium KKU-MC1 and its application in enhancing biomethane production.

机构信息

Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand.

International College, Thaksin University, Songkhla, 90000, Thailand.

出版信息

Sci Rep. 2023 Feb 20;13(1):2968. doi: 10.1038/s41598-023-29895-0.


DOI:10.1038/s41598-023-29895-0
PMID:36804594
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9941523/
Abstract

Lignocellulosic biomass is a promising substrate for biogas production. However, its recalcitrant structure limits conversion efficiency. This study aims to design a microbial consortium (MC) capable of producing the cellulolytic enzyme and exploring the taxonomic and genetic aspects of lignocellulose degradation. A diverse range of lignocellulolytic bacteria and degrading enzymes from various habitats were enriched for a known KKU-MC1. The KKU-MC1 was found to be abundant in Bacteroidetes (51%), Proteobacteria (29%), Firmicutes (10%), and other phyla (8% unknown, 0.4% unclassified, 0.6% archaea, and the remaining 1% other bacteria with low predominance). Carbohydrate-active enzyme (CAZyme) annotation revealed that the genera Bacteroides, Ruminiclostridium, Enterococcus, and Parabacteroides encoded a diverse set of cellulose and hemicellulose degradation enzymes. Furthermore, the gene families associated with lignin deconstruction were more abundant in the Pseudomonas genera. Subsequently, the effects of MC on methane production from various biomasses were studied in two ways: bioaugmentation and pre-hydrolysis. Methane yield (MY) of pre-hydrolysis cassava bagasse (CB), Napier grass (NG), and sugarcane bagasse (SB) with KKU-MC1 for 5 days improved by 38-56% compared to non-prehydrolysis substrates, while MY of prehydrolysed filter cake (FC) for 15 days improved by 56% compared to raw FC. The MY of CB, NG, and SB (at 4% initial volatile solid concentration (IVC)) with KKU-MC1 augmentation improved by 29-42% compared to the non-augmentation treatment. FC (1% IVC) had 17% higher MY than the non-augmentation treatment. These findings demonstrated that KKU-MC1 released the cellulolytic enzyme capable of decomposing various lignocellulosic biomasses, resulting in increased biogas production.

摘要

木质纤维素生物质是沼气生产的有前途的底物。然而,其顽固的结构限制了转化效率。本研究旨在设计一种能够产生纤维素酶的微生物群落(MC),并探索木质纤维素降解的分类和遗传方面。从各种生境中富集了各种木质纤维素降解细菌和降解酶,用于已知的 KKU-MC1。发现 KKU-MC1 在拟杆菌门(51%)、变形菌门(29%)、厚壁菌门(10%)和其他门(8%未知、0.4%未分类、0.6%古菌和其余 1%其他低优势细菌)中丰富。碳水化合物活性酶(CAZyme)注释表明,拟杆菌属、真杆菌属、肠球菌属和副拟杆菌属的属编码了一系列不同的纤维素和半纤维素降解酶。此外,与木质素解构相关的基因家族在假单胞菌属中更为丰富。随后,通过两种方式研究了 MC 对各种生物质产甲烷的影响:生物强化和预水解。与非预水解底物相比,用 KKU-MC1 对预处理的木薯渣(CB)、象草(NG)和甘蔗渣(SB)进行 5 天预水解后,甲烷产量(MY)提高了 38-56%,而用 KKU-MC1 对预处理的滤饼(FC)进行 15 天预水解后,MY 提高了 56%与原始 FC 相比。在 KKU-MC1 强化下,CB、NG 和 SB(初始挥发性固体浓度(IVC)为 4%)的 MY 提高了 29-42%与非强化处理相比。FC(1% IVC)的 MY 比非强化处理高 17%。这些发现表明,KKU-MC1 释放出能够分解各种木质纤维素生物质的纤维素酶,从而提高沼气产量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d316/9941523/38995d776164/41598_2023_29895_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d316/9941523/2e167d1e02b7/41598_2023_29895_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d316/9941523/b4715ed6704b/41598_2023_29895_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d316/9941523/fcd66e3435f6/41598_2023_29895_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d316/9941523/4ad9e5bc19e6/41598_2023_29895_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d316/9941523/d4fbfc0f054f/41598_2023_29895_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d316/9941523/c72a3dd1e9a2/41598_2023_29895_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d316/9941523/b9e8c4dc0b50/41598_2023_29895_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d316/9941523/711284610b2d/41598_2023_29895_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d316/9941523/e1c47e12b0ad/41598_2023_29895_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d316/9941523/38995d776164/41598_2023_29895_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d316/9941523/2e167d1e02b7/41598_2023_29895_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d316/9941523/b4715ed6704b/41598_2023_29895_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d316/9941523/fcd66e3435f6/41598_2023_29895_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d316/9941523/4ad9e5bc19e6/41598_2023_29895_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d316/9941523/d4fbfc0f054f/41598_2023_29895_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d316/9941523/c72a3dd1e9a2/41598_2023_29895_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d316/9941523/b9e8c4dc0b50/41598_2023_29895_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d316/9941523/711284610b2d/41598_2023_29895_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d316/9941523/e1c47e12b0ad/41598_2023_29895_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d316/9941523/38995d776164/41598_2023_29895_Fig10_HTML.jpg

相似文献

[1]
Taxonomic and enzymatic basis of the cellulolytic microbial consortium KKU-MC1 and its application in enhancing biomethane production.

Sci Rep. 2023-2-20

[2]
Characterization of cellulolytic microbial consortium enriched on Napier grass using metagenomic approaches.

J Biosci Bioeng. 2018-4

[3]
Comparison and evaluation of concurrent saccharification and anaerobic digestion of Napier grass after pretreatment by three microbial consortia.

Bioresour Technol. 2014-10-18

[4]
Efficient methane production from agro-industrial residues using anaerobic fungal-rich consortia.

World J Microbiol Biotechnol. 2024-6-12

[5]
Functional characterization of thermotolerant microbial consortium for lignocellulolytic enzymes with central role of Firmicutes in rice straw depolymerization.

Sci Rep. 2021-2-4

[6]
Metagenomic and metaproteomic analyses of a corn stover-adapted microbial consortium EMSD5 reveal its taxonomic and enzymatic basis for degrading lignocellulose.

Biotechnol Biofuels. 2016-11-9

[7]
Metagenomic Insight into Lignocellulose Degradation of the Thermophilic Microbial Consortium TMC7.

J Microbiol Biotechnol. 2021-8-28

[8]
Applying functional metagenomics to search for novel lignocellulosic enzymes in a microbial consortium derived from a thermophilic composting phase of sugarcane bagasse and cow manure.

Antonie Van Leeuwenhoek. 2016-9

[9]
Enhancing anaerobic digestion of cotton stalk by pretreatment with a microbial consortium (MC1).

Bioresour Technol. 2016-2-11

[10]
Simple yet effective: Microbial and biotechnological benefits of rumen liquid addition to lignocellulose-degrading biogas plants.

J Biotechnol. 2019-5-10

引用本文的文献

[1]
Designing synthetic microbial communities for enhanced anaerobic waste treatment.

Appl Environ Microbiol. 2025-6-18

[2]
Biohythane production via anaerobic digestion process: fundamentals, scale-up challenges, and techno-economic and environmental aspects.

Environ Sci Pollut Res Int. 2024-8

[3]
Top-down and bottom-up microbiome engineering approaches to enable biomanufacturing from waste biomass.

J Ind Microbiol Biotechnol. 2024-1-9

[4]
Conversion of carbon dioxide in biogas into acetic acid by immobilized on porous support materials.

Heliyon. 2024-2-13

[5]
Unlocking the potential of sugarcane leaf waste for sustainable methane production: Insights from microbial pre-hydrolysis and reactor optimization.

Heliyon. 2024-2-3

[6]
Anaerobic co-digestion of grass and cow manure: kinetic and GHG calculations.

Sci Rep. 2023-4-18

本文引用的文献

[1]
Biological saccharification coupled with anaerobic digestion using corn straw for sustainable methane production.

Bioresour Technol. 2023-1

[2]
KEGG for taxonomy-based analysis of pathways and genomes.

Nucleic Acids Res. 2023-1-6

[3]
Structural and metabolic adaptation of cellulolytic microcosm in co-digested Napier grass-swine manure and its application in enhancing thermophilic biogas production.

RSC Adv. 2018-8-22

[4]
Bottom-up synthetic ecology study of microbial consortia to enhance lignocellulose bioconversion.

Biotechnol Biofuels Bioprod. 2022-2-7

[5]
In-situ biogas upgrading assisted by bioaugmentation with hydrogenotrophic methanogens during mesophilic and thermophilic co-digestion.

Bioresour Technol. 2022-3

[6]
Augmentation characteristics and microbial community dynamics of low temperature resistant composite strains LTF-27.

Environ Sci Pollut Res Int. 2022-5

[7]
Enhanced methane production and hydrocarbon removal from petroleum refinery sludge after Pseudomonas putida pretreatment and process scale-up.

Bioresour Technol. 2022-1

[8]
Anaerobic Co-digestion of Rice Straw and Pig Manure Pretreated With a Cellulolytic Microflora: Methane Yield Evaluation and Kinetics Analysis.

Front Bioeng Biotechnol. 2021-2-4

[9]
Biodegradation of creosote-treated wood by two novel constructed microbial consortia for the enhancement of methane production.

Bioresour Technol. 2021-3

[10]
Enrichment of waste sewage sludge for enhancing methane production from cellulose.

Bioresour Technol. 2020-12-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索