Institute for Cross-Disciplinary Physics and Complex Systems IFISC (UIB-CSIC), Palma de Mallorca, Spain.
Nanoscale. 2018 Feb 22;10(8):3904-3910. doi: 10.1039/c7nr05739c.
Recent experiments demonstrate a temperature control of the electric conduction through a ferrocene-based molecular junction. Here we examine the results in view of determining means to distinguish between transport through single-particle molecular levels or via transport channels split by Coulomb repulsion. Both transport mechanisms are similar in molecular junctions given the similarities between molecular intralevel energies and the charging energy. We propose an experimentally testable way to identify the main transport process. By applying a magnetic field to the molecule, we observe that an interacting theory predicts a shift of the conductance resonances of the molecule whereas in the noninteracting case each resonance is split into two peaks. The interaction model works well in explaining our experimental results obtained in a ferrocene-based single-molecule junction, where the charge degeneracy peaks shift (but do not split) under the action of an applied 7-Tesla magnetic field. This method is useful for a proper characterization of the transport properties of molecular tunnel junctions.
最近的实验表明,通过基于二茂铁的分子结可以控制电流的传导。在这里,我们研究了这些结果,以期确定区分通过单个分子能级或通过库仑排斥分裂的输运通道的方法。由于分子内能级和充电能之间的相似性,这两种输运机制在分子结中是相似的。我们提出了一种可通过实验验证的方法来识别主要的输运过程。通过对分子施加磁场,我们观察到相互作用理论预测了分子电导共振的移动,而在非相互作用的情况下,每个共振分裂为两个峰。相互作用模型很好地解释了我们在基于二茂铁的单分子结中获得的实验结果,其中在施加 7 特斯拉磁场的作用下,电荷简并峰发生了移动(但没有分裂)。这种方法对于正确表征分子隧道结的输运性质非常有用。