School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon, Republic of Korea.
Biomater Sci. 2018 Feb 27;6(3):661-671. doi: 10.1039/c7bm00980a.
Sustained delivery of protein therapeutics is limited owing to the fragile nature of proteins. Despite its great potential, delivery of proteins without any loss of bioactivity remains a challenge in the use of protein therapeutics in the clinic. To surmount this shortcoming, we report a pH- and temperature-responsive in situ-forming injectable hydrogel based on comb-type polypeptide block copolymers for the controlled delivery of proteins. Polypeptide block copolymers, composed of hydrophilic polyethylene glycol (PEG), temperature-responsive poly(γ-benzyl-l-glutamate) (PBLG), and pH-responsive oligo(sulfamethazine) (OSM), exhibit pH- and temperature-induced sol-to-gel transition behavior in aqueous solutions. Polypeptide block copolymers were synthesized by combining N-carboxyanhydride-based ring-opening polymerization and post-functionalization of the chain-end using N-hydroxy succinimide ester activated OSM. The physical properties of polypeptide-based hydrogels were tuned by varying the composition of temperature- and pH-responsive PBLG and OSM in block copolymers. Polypeptide block copolymers were non-toxic to human embryonic kidney cells at high concentrations (2000 μg mL). Subcutaneous administration of polypeptide block copolymer sols formed viscoelastic gel instantly at the back of Sprague-Dawley (SD) rats. The in vivo gels exhibited sustained degradation and were found to be bioresorbable in 6 weeks without any noticeable inflammation at the injection site. Anionic characteristics of hydrogels allow efficient loading of a cationic model protein, lysozyme, through electrostatic interaction. Lysozyme-loaded polypeptide block copolymer sols readily formed a viscoelastic gel in vivo and sustained lysozyme release for at least a week. Overall, the results demonstrate an elegant approach to control the release of certain charged proteins and open a myriad of therapeutic possibilities in protein therapeutics.
蛋白质治疗药物的持续递送受到蛋白质脆弱性质的限制。尽管具有巨大的潜力,但在临床应用蛋白质治疗药物时,如何在不损失生物活性的情况下递送蛋白质仍然是一个挑战。为了克服这一缺点,我们报告了一种基于梳状多肽嵌段共聚物的 pH 和温度响应型原位形成可注射水凝胶,用于蛋白质的控制释放。由亲水性聚乙二醇(PEG)、温度响应性聚(γ-苄基-L-谷氨酸)(PBLG)和 pH 响应性寡(磺胺嘧啶)(OSM)组成的多肽嵌段共聚物在水溶液中表现出 pH 和温度诱导的溶胶-凝胶转变行为。通过 N-羧基酸酐开环聚合和使用 N-羟基琥珀酰亚胺酯活化的 OSM 对链末端的后功能化,合成了多肽嵌段共聚物。通过改变温度和 pH 响应性 PBLG 和 OSM 在嵌段共聚物中的组成来调整多肽水凝胶的物理性能。多肽嵌段共聚物在高浓度(2000μg mL)时对人胚肾细胞没有毒性。多肽嵌段共聚物溶液在 Sprague-Dawley(SD)大鼠背部皮下给药后立即形成粘弹性凝胶。体内凝胶表现出持续的降解,并在 6 周内被发现是可生物吸收的,在注射部位没有任何明显的炎症。水凝胶的阴离子特性允许通过静电相互作用有效负载阳离子模型蛋白溶菌酶。载有溶菌酶的多肽嵌段共聚物溶液在体内容易形成粘弹性凝胶,并能持续释放溶菌酶至少一周。总的来说,这些结果证明了一种控制某些带电蛋白质释放的优雅方法,并为蛋白质治疗药物开辟了无数的治疗可能性。