School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University , Suwon 440-746 , Republic of Korea.
Faculty of Applied Sciences , Ton Duc Thang University , Ho Chi Minh City 70000 , Vietnam.
Biomacromolecules. 2018 Aug 13;19(8):3536-3548. doi: 10.1021/acs.biomac.8b00819. Epub 2018 Jul 27.
Despite great potential, the delivery of genetic materials into cells or tissues of interest remains challenging owing to their susceptibility to nuclease degradation, lack of permeability to the cell membrane, and short in vivo half-life, which severely restrict their widespread use in therapeutics. To surmount these shortcomings, we developed a bioinspired in situ-forming pH- and temperature-sensitive injectable hydrogel depot that could control the delivery of DNA-bearing polyplexes for versatile biomedical applications. A series of multiblock copolymer, comprised of water-soluble poly(ethylene glycol) (PEG) and pH- and temperature-responsive poly(sulfamethazine ester urethane) (PSMEU), has been synthesized as in situ-forming injectable hydrogelators. The free-flowing PEG-PSMEU copolymer sols at high pH and room temperature (pH 8.5, 23 °C) were transformed to stable gel at the body condition (pH 7.4, 37 °C). Physical and mechanical properties of hydrogels, including their degradation rate and viscosity, are elegantly controlled by varying the composition of urethane ester units. Subcutaneous administration of free-flowing PEG-PSMEU copolymer sols to the dorsal region of Sprague-Dawley rats instantly formed hydrogel depot. The degradation of the hydrogel depot was slow at the beginning and found to be bioresorbable after two months. Cationic protein or DNA-bearing polyplex-loaded PEG-PSMEU copolymer sols formed stable gel and controlled its release over 10 days in vivo. Owing to the presence of urethane linkages, the PEG-PSMEU possesses excellent adhesion strength to wide range of surfaces including glass, plastic, and fresh organs. More importantly, the hydrogels effectively adhered on human skin and peeled easily without eliciting an inflammatory response. Subcutaneous implantation of PEG-PSMEU copolymer sols effectively sealed the ruptured skin, which accelerated the wound healing process as observed by the skin appendage morphogenesis. The bioinspired in situ-forming pH- and temperature-sensitive injectable adhesive hydrogel may provide a promising platform for myriad biomedical applications as controlled delivery vehicle, adhesive, and tissue regeneration.
尽管具有巨大的潜力,但由于其易被核酸酶降解、缺乏细胞膜通透性和体内半衰期短,将遗传物质递送到感兴趣的细胞或组织仍然具有挑战性,这严重限制了它们在治疗中的广泛应用。为了克服这些缺点,我们开发了一种仿生原位形成的 pH 和温度敏感的可注射水凝胶库,可控制携带 DNA 的聚阳离子复合物的递送,用于多种生物医学应用。一系列多嵌段共聚物,由水溶性聚(乙二醇)(PEG)和 pH 和温度响应性聚(磺胺嘧啶酯氨酯)(PSMEU)组成,已被合成作为原位形成的可注射水凝胶剂。在高 pH 值和室温(pH 8.5,23°C)下,自由流动的 PEG-PSMEU 共聚物溶液可在体温(pH 7.4,37°C)下转变为稳定的凝胶。水凝胶的物理和机械性能,包括其降解率和粘度,可以通过改变氨酯单元的组成来巧妙地控制。将自由流动的 PEG-PSMEU 共聚物溶液皮下注射到 Sprague-Dawley 大鼠的背部区域,立即形成水凝胶库。水凝胶库的降解在开始时较慢,两个月后发现可生物吸收。阳离子蛋白或携带 DNA 的聚阳离子复合物负载的 PEG-PSMEU 共聚物溶液形成稳定的凝胶,并在体内 10 天内控制其释放。由于存在氨酯键,PEG-PSMEU 对包括玻璃、塑料和新鲜器官在内的广泛表面具有极好的粘附强度。更重要的是,水凝胶能够有效地粘附在人体皮肤上,易于剥离,且不会引起炎症反应。PEG-PSMEU 共聚物溶液的皮下植入有效地密封了破裂的皮肤,这加速了伤口愈合过程,如皮肤附属物形态发生所观察到的那样。这种仿生原位形成的 pH 和温度敏感的可注射性黏附水凝胶可为作为控制药物释放载体、黏附剂和组织再生的多种生物医学应用提供有前途的平台。