Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea.
Adv Mater. 2018 Mar;30(12):e1706547. doi: 10.1002/adma.201706547. Epub 2018 Feb 9.
Natural double-layered structures observed in living organisms are known to exhibit asymmetric volume changes with environmental triggers. Typical examples are natural roots of plants, which show unique self-organized bending behavior in response to environmental stimuli. Herein, light- and electro-active polymer (LEAP) based actuators with a double-layered structure are reported. The LEAP actuators exhibit an improvement of 250% in displacement and hold an object three times heavier as compared to that in the case of conventional electro-active polymer actuators. Most interestingly, the bending motion of the LEAP actuators can be effectively locked for a few tens of minutes even in the absence of a power supply. Further, the self-locking LEAP actuators show a large and reversible bending strain of more than 2.0% and require only 6.2 mW h cm of energy to hold an object for 15 min at an operating voltage of 3 V. These novel self-locking soft actuators should find wide applicability in artificial muscles, biomedical microdevices, and various innovative soft robot technologies.
在活体生物中观察到的天然双层结构已知会随着环境触发因素表现出不对称的体积变化。典型的例子是植物的天然根系,它会对环境刺激表现出独特的自组织弯曲行为。本文报道了具有双层结构的基于光和电活性聚合物(LEAP)的致动器。与传统的电活性聚合物致动器相比,LEAP 致动器的位移提高了 250%,能够支撑三倍于自身重量的物体。最有趣的是,即使没有电源,LEAP 致动器的弯曲运动也可以有效地锁定几十分钟。此外,自锁定的 LEAP 致动器表现出超过 2.0%的大且可逆的弯曲应变,并且仅需 6.2 mW h cm 的能量即可在 3 V 的工作电压下保持 15 分钟的物体。这些新型的自锁定软致动器应该在人造肌肉、生物医学微器件和各种创新的软机器人技术中得到广泛应用。