Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX, USA.
Angew Chem Int Ed Engl. 2018 Mar 26;57(14):3676-3681. doi: 10.1002/anie.201713244. Epub 2018 Mar 1.
Metal-organic frameworks (MOFs) have garnered substantial interest as platforms for site-isolated catalysis. Efficient diffusion of small-molecule substrates to interstitial lattice-confined catalyst sites is critical to leveraging unique opportunities of these materials as catalysts. Understanding the rates of substrate diffusion in MOFs is challenging, and few in situ chemical tools are available to evaluate substrate diffusion during interstitial MOF chemistry. Herein, we demonstrate nitrogen atom transfer (NAT) from a lattice-confined Ru nitride to toluene to generate benzylamine. We use the comparison of the intramolecular deuterium kinetic isotope effect (KIE), determined for amination of a partially deuterated substrate, with the intermolecular KIE, determined by competitive amination of a mixture of perdeuterated and undeuterated substrates, to establish the relative rates of substrate diffusion and interstitial chemistry. We anticipate that the developed KIE-based experiments will contribute to the development of porous materials for group-transfer catalysis.
金属-有机骨架(MOFs)作为位阻催化的平台引起了广泛关注。小分子底物有效地扩散到限域在晶格中的催化剂位是利用这些材料作为催化剂的独特机会的关键。理解 MOFs 中底物的扩散速率具有挑战性,并且很少有原位化学工具可用于评估间位 MOF 化学过程中的底物扩散。在此,我们证明了氮原子从晶格限域的 Ru 氮化物转移到甲苯生成苄胺。我们使用部分氘代底物的胺化的内分子氘动力学同位素效应(KIE)与通过氘代和未氘代底物混合物的竞争胺化确定的间分子 KIE 的比较,确定了相对的扩散和间位化学的反应速率。我们预计,所开发的基于 KIE 的实验将有助于开发用于基团转移催化的多孔材料。