Suppr超能文献

通过过氧钒酸铵的微爆炸分解在氧化石墨烯上形成氧化钒薄膜及其在钠离子电池阳极中的应用。

Vanadium Oxide Thin Film Formation on Graphene Oxide by Microexplosive Decomposition of Ammonium Peroxovanadate and Its Application as a Sodium Ion Battery Anode.

机构信息

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences , Leninskii prosp. 31, Moscow 119991, Russia.

The Casali Center of Applied Chemistry, The Institute of Chemistry, The Hebrew University of Jerusalem , Edmond J. Safra Campus, Jerusalem 91904, Israel.

出版信息

Langmuir. 2018 Feb 27;34(8):2741-2747. doi: 10.1021/acs.langmuir.8b00035. Epub 2018 Feb 16.

Abstract

Formation of vanadium oxide nanofilm-coated graphene oxide (GO) is achieved by thermally induced explosive disintegration of a microcrystalline ammonium peroxovanadate-GO composite. GO sheets isolate the microcrystalline grains and capture and contain the microexplosion products, resulting in the deposition of the nanoscale products on the GO. Thermal treatment of the supported nanofilm yields a sequence of nanocrystalline phases of vanadium oxide (VO, VO) as a function of temperature. This is the first demonstration of microexplosive disintegration of a crystalline peroxo compound to yield a nanocoating. The large number of recently reported peroxide-rich crystalline materials suggests that the process can be a useful general route for nanofilm formation. The VO@GO composite product was tested as a sodium ion battery anode and showed high charge capacity at high rate charge-discharge cycling (150 mAh g at 3000 mA g vs 300 mAh g at 100 mA g) due to the nanomorphology of the vanadium oxide.

摘要

通过热诱导微爆使过氧钒酸铵-氧化石墨烯(GO)复合微晶体爆炸分解,形成了氧化钒纳米薄膜包覆的 GO。GO 薄片将微晶粒隔离,并捕获和包含微爆炸产物,从而使纳米级产物沉积在 GO 上。负载型纳米薄膜经热处理后,会随着温度的变化依次生成一系列氧化钒(VO、VO)纳米晶相。这是首例利用过氧化合物的微爆炸来制备纳米涂层的实例。最近报道的过氧化物丰富的晶体材料数量众多,这表明该方法可能是一种制备纳米薄膜的通用方法。VO@GO 复合材料被用作钠离子电池的阳极,在高倍率充放电循环(3000 mA g 时为 150 mAh g,100 mA g 时为 300 mAh g)下表现出高的充电容量,这归因于氧化钒的纳米形态。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验