Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences , Leninskii prosp. 31, Moscow 119991, Russia.
The Casali Center of Applied Chemistry, The Institute of Chemistry, The Hebrew University of Jerusalem , Edmond J. Safra Campus, Jerusalem 91904, Israel.
Langmuir. 2018 Feb 27;34(8):2741-2747. doi: 10.1021/acs.langmuir.8b00035. Epub 2018 Feb 16.
Formation of vanadium oxide nanofilm-coated graphene oxide (GO) is achieved by thermally induced explosive disintegration of a microcrystalline ammonium peroxovanadate-GO composite. GO sheets isolate the microcrystalline grains and capture and contain the microexplosion products, resulting in the deposition of the nanoscale products on the GO. Thermal treatment of the supported nanofilm yields a sequence of nanocrystalline phases of vanadium oxide (VO, VO) as a function of temperature. This is the first demonstration of microexplosive disintegration of a crystalline peroxo compound to yield a nanocoating. The large number of recently reported peroxide-rich crystalline materials suggests that the process can be a useful general route for nanofilm formation. The VO@GO composite product was tested as a sodium ion battery anode and showed high charge capacity at high rate charge-discharge cycling (150 mAh g at 3000 mA g vs 300 mAh g at 100 mA g) due to the nanomorphology of the vanadium oxide.
通过热诱导微爆使过氧钒酸铵-氧化石墨烯(GO)复合微晶体爆炸分解,形成了氧化钒纳米薄膜包覆的 GO。GO 薄片将微晶粒隔离,并捕获和包含微爆炸产物,从而使纳米级产物沉积在 GO 上。负载型纳米薄膜经热处理后,会随着温度的变化依次生成一系列氧化钒(VO、VO)纳米晶相。这是首例利用过氧化合物的微爆炸来制备纳米涂层的实例。最近报道的过氧化物丰富的晶体材料数量众多,这表明该方法可能是一种制备纳米薄膜的通用方法。VO@GO 复合材料被用作钠离子电池的阳极,在高倍率充放电循环(3000 mA g 时为 150 mAh g,100 mA g 时为 300 mAh g)下表现出高的充电容量,这归因于氧化钒的纳米形态。