Suppr超能文献

临床记录的自然语言处理以识别严重肢体缺血。

Natural language processing of clinical notes for identification of critical limb ischemia.

机构信息

Department of Health Sciences Research, Mayo Clinic and Mayo Foundation, Rochester, MN, United States.

Department of Cardiovascular Diseases, Mayo Clinic and Mayo Foundation, Rochester, MN, United States.

出版信息

Int J Med Inform. 2018 Mar;111:83-89. doi: 10.1016/j.ijmedinf.2017.12.024. Epub 2017 Dec 28.

Abstract

BACKGROUND

Critical limb ischemia (CLI) is a complication of advanced peripheral artery disease (PAD) with diagnosis based on the presence of clinical signs and symptoms. However, automated identification of cases from electronic health records (EHRs) is challenging due to absence of a single definitive International Classification of Diseases (ICD-9 or ICD-10) code for CLI.

METHODS AND RESULTS

In this study, we extend a previously validated natural language processing (NLP) algorithm for PAD identification to develop and validate a subphenotyping NLP algorithm (CLI-NLP) for identification of CLI cases from clinical notes. We compared performance of the CLI-NLP algorithm with CLI-related ICD-9 billing codes. The gold standard for validation was human abstraction of clinical notes from EHRs. Compared to billing codes the CLI-NLP algorithm had higher positive predictive value (PPV) (CLI-NLP 96%, billing codes 67%, p < 0.001), specificity (CLI-NLP 98%, billing codes 74%, p < 0.001) and F1-score (CLI-NLP 90%, billing codes 76%, p < 0.001). The sensitivity of these two methods was similar (CLI-NLP 84%; billing codes 88%; p < 0.12).

CONCLUSIONS

The CLI-NLP algorithm for identification of CLI from narrative clinical notes in an EHR had excellent PPV and has potential for translation to patient care as it will enable automated identification of CLI cases for quality projects, clinical decision support tools and support a learning healthcare system.

摘要

背景

严重肢体缺血(CLI)是外周动脉疾病(PAD)进展的并发症,其诊断基于临床体征和症状的存在。然而,由于缺乏用于 CLI 的单一明确的国际疾病分类(ICD-9 或 ICD-10)代码,因此从电子健康记录(EHR)中自动识别病例具有挑战性。

方法和结果

在这项研究中,我们扩展了先前经过验证的用于 PAD 识别的自然语言处理(NLP)算法,以开发和验证用于从临床记录中识别 CLI 病例的子表型 NLP 算法(CLI-NLP)。我们比较了 CLI-NLP 算法与 CLI 相关的 ICD-9 计费代码的性能。验证的金标准是从 EHR 中提取临床记录的人工摘要。与计费代码相比,CLI-NLP 算法具有更高的阳性预测值(PPV)(CLI-NLP 为 96%,计费代码为 67%,p<0.001)、特异性(CLI-NLP 为 98%,计费代码为 74%,p<0.001)和 F1 分数(CLI-NLP 为 90%,计费代码为 76%,p<0.001)。这两种方法的灵敏度相似(CLI-NLP 为 84%;计费代码为 88%;p<0.12)。

结论

用于从 EHR 中的叙述性临床记录中识别 CLI 的 CLI-NLP 算法具有出色的 PPV,并且具有转化为患者护理的潜力,因为它将能够为质量项目、临床决策支持工具自动识别 CLI 病例,并支持学习型医疗保健系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5443/5808583/e18faa334dcf/nihms932399f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验