Suppr超能文献

不同实践环境下的哮喘确定的自然语言处理。

Natural Language Processing for Asthma Ascertainment in Different Practice Settings.

机构信息

Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minn; Asthma Epidemiology Research Unit, Mayo Clinic, Rochester, Minn.

Department of Health Sciences Research, Mayo Clinic, Rochester, Minn.

出版信息

J Allergy Clin Immunol Pract. 2018 Jan-Feb;6(1):126-131. doi: 10.1016/j.jaip.2017.04.041. Epub 2017 Jun 19.

Abstract

BACKGROUND

We developed and validated NLP-PAC, a natural language processing (NLP) algorithm based on predetermined asthma criteria (PAC) for asthma ascertainment using electronic health records at Mayo Clinic.

OBJECTIVE

To adapt NLP-PAC in a different health care setting, Sanford Children Hospital, by assessing its external validity.

METHODS

The study was designed as a retrospective cohort study that used a random sample of 2011-2012 Sanford Birth cohort (n = 595). Manual chart review was performed on the cohort for asthma ascertainment on the basis of the PAC. We then used half of the cohort as a training cohort (n = 298) and the other half as a blind test cohort to evaluate the adapted NLP-PAC algorithm. Association of known asthma-related risk factors with the Sanford-NLP algorithm-driven asthma ascertainment was tested.

RESULTS

Among the eligible test cohort (n = 297), 160 (53%) were males, 268 (90%) white, and the median age was 2.3 years (range, 1.5-3.1 years). NLP-PAC, after adaptation, and the human abstractor identified 74 (25%) and 72 (24%) subjects, respectively, with 66 subjects identified by both approaches. Sensitivity, specificity, positive predictive value, and negative predictive value for the NLP algorithm in predicting asthma status were 92%, 96%, 89%, and 97%, respectively. The known risk factors for asthma identified by NLP (eg, smoking history) were similar to the ones identified by manual chart review.

CONCLUSIONS

Successful implementation of NLP-PAC for asthma ascertainment in 2 different practice settings demonstrates the feasibility of automated asthma ascertainment leveraging electronic health record data with a potential to enable large-scale, multisite asthma studies to improve asthma care and research.

摘要

背景

我们开发并验证了基于电子病历中预先设定的哮喘标准(PAC)的自然语言处理(NLP)算法 NLP-PAC,用于在梅奥诊所进行哮喘诊断。

目的

通过评估其外部有效性,将 NLP-PAC 应用于不同的医疗保健环境(桑福德儿童医院)。

方法

该研究设计为回顾性队列研究,使用桑福德出生队列(2011-2012 年)的随机样本(n=595)。根据 PAC,对队列进行了手动图表审查,以确定哮喘。然后,我们使用队列的一半作为训练队列(n=298),另一半作为盲测队列,以评估经过改编的 NLP-PAC 算法。测试了与已知哮喘相关的风险因素与桑福德-NLP 算法驱动的哮喘诊断之间的关联。

结果

在合格的测试队列(n=297)中,160 名(53%)为男性,268 名(90%)为白人,中位年龄为 2.3 岁(范围,1.5-3.1 岁)。改编后的 NLP-PAC 和人工摘要分别识别了 74(25%)和 72(24%)的患者,其中 66 名患者通过两种方法识别。NLP 算法预测哮喘状态的敏感性、特异性、阳性预测值和阴性预测值分别为 92%、96%、89%和 97%。NLP 识别的哮喘的已知风险因素(例如,吸烟史)与手动图表审查识别的因素相似。

结论

在 2 种不同的实践环境中成功实施 NLP-PAC 用于哮喘诊断,证明了利用电子病历数据进行自动哮喘诊断的可行性,有可能实现大规模、多站点的哮喘研究,以改善哮喘护理和研究。

相似文献

1
Natural Language Processing for Asthma Ascertainment in Different Practice Settings.不同实践环境下的哮喘确定的自然语言处理。
J Allergy Clin Immunol Pract. 2018 Jan-Feb;6(1):126-131. doi: 10.1016/j.jaip.2017.04.041. Epub 2017 Jun 19.

引用本文的文献

6
AI model for predicting asthma prognosis in children.预测儿童哮喘预后的人工智能模型。
J Allergy Clin Immunol Glob. 2025 Jan 31;4(2):100429. doi: 10.1016/j.jacig.2025.100429. eCollection 2025 May.
7
Association of delayed asthma diagnosis with asthma exacerbations in children.儿童哮喘延迟诊断与哮喘急性加重的关联。
J Allergy Clin Immunol Glob. 2025 Jan 16;4(2):100409. doi: 10.1016/j.jacig.2025.100409. eCollection 2025 May.

本文引用的文献

2
Risk of herpes zoster in children with asthma.哮喘患儿患带状疱疹的风险。
Allergy Asthma Proc. 2015 Sep-Oct;36(5):372-8. doi: 10.2500/aap.2015.36.3864.
5
Patient-level temporal aggregation for text-based asthma status ascertainment.基于文本的哮喘状态确定的患者级时间聚合。
J Am Med Inform Assoc. 2014 Sep-Oct;21(5):876-84. doi: 10.1136/amiajnl-2013-002463. Epub 2014 May 15.
9
Quantifying traffic exposure.量化交通暴露。
J Expo Sci Environ Epidemiol. 2014 May-Jun;24(3):290-6. doi: 10.1038/jes.2013.51. Epub 2013 Sep 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验