Suppr超能文献

利用核偏最小二乘法(KPLS)结合基于连续投影算法的间隔选择,对制糖样品中的 Brix 和蔗糖进行可见-近红外光谱定量测定。

Vis-NIR spectrometric determination of Brix and sucrose in sugar production samples using kernel partial least squares with interval selection based on the successive projections algorithm.

机构信息

Laboratório de Automação e Instrumentação em Química Analítica e Quimiometria (LAQA) Universidade Federal da Paraíba, CCEN, Departamento de Química, Caixa Postal 5093, CEP 58051-970, João Pessoa, PB, Brazil.

Faculdade de Química, Instituto de Ciências Exatas da Universidade Federal do Sul e Sudoeste do Pará, Folha 17, Quadra 04, Lote Especial, Nova Marabá, CEP: 68.505.080, Marabá, Pará, Brazil.

出版信息

Talanta. 2018 May 1;181:38-43. doi: 10.1016/j.talanta.2017.12.064. Epub 2017 Dec 24.

Abstract

This paper proposes a new variable selection method for nonlinear multivariate calibration, combining the Successive Projections Algorithm for interval selection (iSPA) with the Kernel Partial Least Squares (Kernel-PLS) modelling technique. The proposed iSPA-Kernel-PLS algorithm is employed in a case study involving a Vis-NIR spectrometric dataset with complex nonlinear features. The analytical problem consists of determining Brix and sucrose content in samples from a sugar production system, on the basis of transflectance spectra. As compared to full-spectrum Kernel-PLS, the iSPA-Kernel-PLS models involve a smaller number of variables and display statistically significant superiority in terms of accuracy and/or bias in the predictions.

摘要

本文提出了一种新的非线性多变量校准变量选择方法,将区间选择的连续投影算法(iSPA)与核偏最小二乘(Kernel-PLS)建模技术相结合。所提出的 iSPA-Kernel-PLS 算法应用于一个具有复杂非线性特征的 Vis-NIR 光谱数据集的案例研究中。分析问题是根据漫反射光谱,确定制糖系统中样品的 Brix 和蔗糖含量。与全谱 Kernel-PLS 相比,iSPA-Kernel-PLS 模型涉及的变量较少,并且在预测的准确性和/或偏差方面具有统计学上的显著优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验