Suppr超能文献

淀粉样 PET 纹理和形状特征的诊断和预后价值:与 ADNI-2 数据库中 760 例患者的经典半定量评分比较。

Diagnostic and prognostic value of amyloid PET textural and shape features: comparison with classical semi-quantitative rating in 760 patients from the ADNI-2 database.

机构信息

Nuclear Medicine Department, Montpellier University Hospital, Montpellier, France.

Nuclear Medicine Department, Purpan University Hospital, Toulouse, France.

出版信息

Brain Imaging Behav. 2019 Feb;13(1):111-125. doi: 10.1007/s11682-018-9833-0.

Abstract

We evaluated the performance of amyloid PET textural and shape features in discriminating normal and Alzheimer's disease (AD) subjects, and in predicting conversion to AD in subjects with mild cognitive impairment (MCI) or significant memory concern (SMC). Subjects from the Alzheimer's Disease Neuroimaging Initiative with available baseline F-florbetapir and T1-MRI scans were included. The cross-sectional cohort consisted of 181 controls and 148 AD subjects. The longitudinal cohort consisted of 431 SMC/MCI subjects, 85 of whom converted to AD during follow-up. PET images were normalized to MNI space and post-processed using in-house software. Relative retention indices (SUVr) were computed with respect to pontine, cerebellar, and composite reference regions. Several textural and shape features were extracted then combined using a support vector machine (SVM) to build a predictive model of AD conversion. Diagnostic and prognostic performance was evaluated using ROC analysis and survival analysis with the Cox proportional hazard model. The three SUVr and all the tested features effectively discriminated AD subjects in cross-sectional analysis (all p < 0.001). In longitudinal analysis, the variables with the highest prognostic value were composite SUVr (AUC 0.86; accuracy 81%), skewness (0.87; 83%), local minima (0.85; 79%), Geary's index (0.86; 81%), gradient norm maximal argument (0.83; 82%), and the SVM model (0.91; 86%). The adjusted hazard ratio for AD conversion was 5.5 for the SVM model, compared with 4.0, 2.6, and 3.8 for cerebellar, pontine and composite SUVr (all p < 0.001), indicating that appropriate amyloid textural and shape features predict conversion to AD with at least as good accuracy as classical SUVr.

摘要

我们评估了淀粉样蛋白 PET 纹理和形状特征在区分正常和阿尔茨海默病(AD)受试者,以及预测轻度认知障碍(MCI)或有明显记忆问题(SMC)受试者向 AD 转化方面的性能。纳入了阿尔茨海默病神经影像学倡议中具有基线 F-氟比他滨和 T1-MRI 扫描的受试者。横断面队列包括 181 名对照者和 148 名 AD 患者。纵向队列包括 431 名 SMC/MCI 患者,其中 85 名在随访期间转化为 AD。PET 图像在 MNI 空间中进行标准化,并使用内部软件进行后处理。相对保留指数(SUVr)相对于脑桥、小脑和复合参考区域进行计算。提取了几个纹理和形状特征,然后使用支持向量机(SVM)进行组合,构建 AD 转化的预测模型。使用 ROC 分析和 Cox 比例风险模型进行生存分析来评估诊断和预后性能。在横断面分析中,所有 SUVr 和测试的特征均有效区分 AD 患者(均 p<0.001)。在纵向分析中,具有最高预后价值的变量是复合 SUVr(AUC 0.86;准确性 81%)、偏度(0.87;83%)、局部最小值(0.85;79%)、Geary 指数(0.86;81%)、梯度范数最大值参数(0.83;82%)和 SVM 模型(0.91;86%)。与小脑、脑桥和复合 SUVr(均 p<0.001)相比,SVM 模型的 AD 转化调整后危险比为 5.5,而 SVM 模型的 AD 转化调整后危险比为 4.0、2.6 和 3.8,表明适当的淀粉样蛋白纹理和形状特征预测向 AD 的转化具有与经典 SUVr 一样高的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验