College of Electrical and Information Engineering, Hunan University, Hunan 410082, China.
College of Electrical and Information Engineering, Hunan University, Hunan 410082, China.
Comput Methods Programs Biomed. 2018 Mar;156:209-215. doi: 10.1016/j.cmpb.2018.01.016. Epub 2018 Jan 11.
In the biomedical field, digital multi-focal images are very important for documentation and communication of specimen data, because the morphological information for a transparent specimen can be captured in form of a stack of high-quality images. Given biomedical image stacks containing multi-focal images, how to efficiently extract effective features from all layers to classify the image stacks is still an open question.
We present to use a deep convolutional neural network (CNN) image fusion based multilinear approach for the taxonomy of multi-focal image stacks. A deep CNN based image fusion technique is used to combine relevant information of multi-focal images within a given image stack into a single image, which is more informative and complete than any single image in the given stack. Besides, multi-focal images within a stack are fused along 3 orthogonal directions, and multiple features extracted from the fused images along different directions are combined by canonical correlation analysis (CCA). Because multi-focal image stacks represent the effect of different factors - texture, shape, different instances within the same class and different classes of objects, we embed the deep CNN based image fusion method within a multilinear framework to propose an image fusion based multilinear classifier.
The experimental results on nematode multi-focal image stacks demonstrated that the deep CNN image fusion based multilinear classifier can reach a higher classification rate (95.7%) than that by the previous multilinear based approach (88.7%), even we only use the texture feature instead of the combination of texture and shape features as in the previous work.
The proposed deep CNN image fusion based multilinear approach shows great potential in building an automated nematode taxonomy system for nematologists. It is effective to classify multi-focal image stacks.
在生物医学领域,数字多焦点图像对于标本数据的记录和交流非常重要,因为透明标本的形态信息可以以高质量图像堆栈的形式获取。对于包含多焦点图像的生物医学图像堆栈,如何从所有层中高效提取有效特征来对图像堆栈进行分类仍然是一个悬而未决的问题。
我们提出使用基于深度卷积神经网络(CNN)的图像融合多线性方法对多焦点图像堆栈进行分类。使用基于深度 CNN 的图像融合技术将给定图像堆栈中多个焦点图像的相关信息融合到单个图像中,该图像比给定堆栈中的任何单个图像都更具信息量和完整性。此外,堆栈中的多焦点图像沿着 3 个正交方向进行融合,并且从不同方向融合的图像中提取的多个特征通过典型相关分析(CCA)进行组合。由于多焦点图像堆栈代表了不同因素的效果——纹理、形状、同一类中的不同实例以及不同类别的对象,我们将基于深度 CNN 的图像融合方法嵌入到多线性框架中,提出一种基于图像融合的多线性分类器。
在多焦点线虫图像堆栈上的实验结果表明,基于深度 CNN 的图像融合多线性分类器可以达到比以前的多线性方法(88.7%)更高的分类率(95.7%),即使我们只使用纹理特征,而不是像以前的工作那样使用纹理和形状特征的组合。
所提出的基于深度 CNN 的图像融合多线性方法在为线虫学家构建自动化线虫分类系统方面具有很大的潜力。它可以有效地对多焦点图像堆栈进行分类。