Department of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, 430074, China.
Department of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, 430074, China.
Med Image Anal. 2017 Dec;42:212-227. doi: 10.1016/j.media.2017.08.006. Epub 2017 Aug 24.
Multi-parameter magnetic resonance imaging (mp-MRI) is increasingly popular for prostate cancer (PCa) detection and diagnosis. However, interpreting mp-MRI data which typically contains multiple unregistered 3D sequences, e.g. apparent diffusion coefficient (ADC) and T2-weighted (T2w) images, is time-consuming and demands special expertise, limiting its usage for large-scale PCa screening. Therefore, solutions to computer-aided detection of PCa in mp-MRI images are highly desirable. Most recent advances in automated methods for PCa detection employ a handcrafted feature based two-stage classification flow, i.e. voxel-level classification followed by a region-level classification. This work presents an automated PCa detection system which can concurrently identify the presence of PCa in an image and localize lesions based on deep convolutional neural network (CNN) features and a single-stage SVM classifier. Specifically, the developed co-trained CNNs consist of two parallel convolutional networks for ADC and T2w images respectively. Each network is trained using images of a single modality in a weakly-supervised manner by providing a set of prostate images with image-level labels indicating only the presence of PCa without priors of lesions' locations. Discriminative visual patterns of lesions can be learned effectively from clutters of prostate and surrounding tissues. A cancer response map with each pixel indicating the likelihood to be cancerous is explicitly generated at the last convolutional layer of the network for each modality. A new back-propagated error E is defined to enforce both optimized classification results and consistent cancer response maps for different modalities, which help capture highly representative PCa-relevant features during the CNN feature learning process. The CNN features of each modality are concatenated and fed into a SVM classifier. For images which are classified to contain cancers, non-maximum suppression and adaptive thresholding are applied to the corresponding cancer response maps for PCa foci localization. Evaluation based on 160 patient data with 12-core systematic TRUS-guided prostate biopsy as the reference standard demonstrates that our system achieves a sensitivity of 0.46, 0.92 and 0.97 at 0.1, 1 and 10 false positives per normal/benign patient which is significantly superior to two state-of-the-art CNN-based methods (Oquab et al., 2015; Zhou et al., 2015) and 6-core systematic prostate biopsies.
多参数磁共振成像(mp-MRI)越来越受到前列腺癌(PCa)检测和诊断的欢迎。然而,解释 mp-MRI 数据是一项耗时的任务,需要特殊的专业知识,这限制了其在大规模 PCa 筛查中的应用。因此,开发用于 mp-MRI 图像中 PCa 的计算机辅助检测方法是非常有必要的。最近,在基于手工制作特征的两阶段分类方法的基础上,开发了用于 PCa 检测的自动化方法。即基于体素级分类和区域级分类。本文提出了一种自动化的 PCa 检测系统,该系统可以基于深度卷积神经网络(CNN)特征和单级 SVM 分类器,同时识别图像中 PCa 的存在并定位病变。具体来说,开发的协同训练 CNN 由分别用于 ADC 和 T2w 图像的两个并行卷积网络组成。每个网络都通过提供一组前列腺图像进行弱监督训练,这些图像具有图像级别的标签,仅指示 PCa 的存在,而没有病变位置的先验信息。可以有效地从前列腺和周围组织的杂波中学习到病变的有区别的视觉模式。对于每个模态,在网络的最后一层卷积层上生成一个具有每个像素指示癌变可能性的癌症响应图。定义了一个新的反向传播误差 E,用于强制不同模态的优化分类结果和一致的癌症响应图,这有助于在 CNN 特征学习过程中捕获高度有代表性的与 PCa 相关的特征。每个模态的 CNN 特征被串联起来,并输入到 SVM 分类器中。对于被分类为包含癌症的图像,在相应的癌症响应图上应用非最大抑制和自适应阈值处理,以定位 PCa 焦点。基于 160 名患者的数据进行评估,以 12 核系统经直肠超声引导前列腺活检作为参考标准,结果表明,我们的系统在 0.1、1 和 10 个假阳性/正常/良性患者的假阳性率分别为 0.46、0.92 和 0.97,显著优于两种最先进的基于 CNN 的方法(Oquab 等人,2015 年;Zhou 等人,2015 年)和 6 核系统前列腺活检。