Johnstone I M, Nadler B
Department of Statistics, Sequoia Hall, 390 Serra Mall, Stanford University, California 94305, U.S.A.
Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, P.O. Box 26, Rehovot 76100,
Biometrika. 2017 Mar;104(1):181-193. doi: 10.1093/biomet/asw060. Epub 2017 Jan 13.
Roy's largest root is a common test statistic in multivariate analysis, statistical signal processing and allied fields. Despite its ubiquity, provision of accurate and tractable approximations to its distribution under the alternative has been a longstanding open problem. Assuming Gaussian observations and a rank-one alternative, or concentrated noncentrality, we derive simple yet accurate approximations for the most common low-dimensional settings. These include signal detection in noise, multiple response regression, multivariate analysis of variance and canonical correlation analysis. A small-noise perturbation approach, perhaps underused in statistics, leads to simple combinations of standard univariate distributions, such as central and noncentral [Formula: see text] and [Formula: see text]. Our results allow approximate power and sample size calculations for Roy's test for rank-one effects, which is precisely where it is most powerful.
罗伊最大根是多元分析、统计信号处理及相关领域中常用的检验统计量。尽管它无处不在,但长期以来,在备择假设下为其分布提供准确且易于处理的近似值一直是个悬而未决的难题。假设观测值服从高斯分布且备择假设为秩一,即集中非中心性,我们针对最常见的低维情形推导出了简单而准确的近似值。这些情形包括噪声中的信号检测、多重响应回归、多元方差分析和典型相关分析。一种在统计学中可能未得到充分利用的小噪声扰动方法,可得出标准单变量分布的简单组合,如中心和非中心[公式:见正文]以及[公式:见正文]。我们的结果使得能够对罗伊秩一效应检验进行近似功效和样本量计算,而这正是该检验最具功效之处。