Suppr超能文献

尖峰多元模型中特征值的联合密度

Joint density of eigenvalues in spiked multivariate models.

作者信息

Dharmawansa Prathapasinghe, Johnstone Iain M

机构信息

Department of Statistics, 390 Serra Mall, Stanford University, Stanford CA 94305, USA.

出版信息

Stat. 2014 Jan 1;3(1):240-249. doi: 10.1002/sta4.58.

Abstract

The classical methods of multivariate analysis are based on the eigenvalues of one or two sample covariance matrices. In many applications of these methods, for example to high dimensional data, it is natural to consider alternative hypotheses which are a low rank departure from the null hypothesis. For rank one alternatives, this note provides a representation for the joint eigenvalue density in terms of a single contour integral. This will be of use for deriving approximate distributions for likelihood ratios and 'linear' statistics used in testing.

摘要

多元分析的经典方法基于一个或两个样本协方差矩阵的特征值。在这些方法的许多应用中,例如对于高维数据,考虑与原假设存在低秩偏离的备择假设是很自然的。对于秩为一的备择假设,本笔记提供了一种用单个围道积分表示联合特征值密度的方法。这将有助于推导用于检验的似然比和“线性”统计量的近似分布。

相似文献

1
Joint density of eigenvalues in spiked multivariate models.
Stat. 2014 Jan 1;3(1):240-249. doi: 10.1002/sta4.58.
2
Asymptotics of empirical eigenstructure for high dimensional spiked covariance.
Ann Stat. 2017 Jun;45(3):1342-1374. doi: 10.1214/16-AOS1487. Epub 2017 Jun 13.
3
Perils of parsimony: properties of reduced-rank estimates of genetic covariance matrices.
Genetics. 2008 Oct;180(2):1153-66. doi: 10.1534/genetics.108.090159. Epub 2008 Aug 30.
5
Fast Estimation of Approximate Matrix Ranks Using Spectral Densities.
Neural Comput. 2017 May;29(5):1317-1351. doi: 10.1162/NECO_a_00951. Epub 2017 Mar 23.
6
Optimal Shrinkage of Eigenvalues in the Spiked Covariance Model.
Ann Stat. 2018 Aug;46(4):1742-1778. doi: 10.1214/17-AOS1601. Epub 2018 Jun 27.
7
On Information Rank Deficiency in Phenotypic Covariance Matrices.
Syst Biol. 2022 Jun 16;71(4):810-822. doi: 10.1093/sysbio/syab088.
8
Test of linear trend in eigenvalues of a covariance matrix with application to data analysis.
Br J Math Stat Psychol. 1996 Nov;49 ( Pt 2):299-312. doi: 10.1111/j.2044-8317.1996.tb01090.x.
9
PCA in High Dimensions: An orientation.
Proc IEEE Inst Electr Electron Eng. 2018 Aug;106(8):1277-1292. doi: 10.1109/JPROC.2018.2846730. Epub 2018 Jul 18.
10
EDGEWORTH CORRECTION FOR THE LARGEST EIGENVALUE IN A SPIKED PCA MODEL.
Stat Sin. 2018 Oct;28(4):2541-2564. doi: 10.5705/ss.202017.0296.

本文引用的文献

1
Roy's largest root test under rank-one alternatives.
Biometrika. 2017 Mar;104(1):181-193. doi: 10.1093/biomet/asw060. Epub 2017 Jan 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验