Dharmawansa Prathapasinghe, Johnstone Iain M
Department of Statistics, 390 Serra Mall, Stanford University, Stanford CA 94305, USA.
Stat. 2014 Jan 1;3(1):240-249. doi: 10.1002/sta4.58.
The classical methods of multivariate analysis are based on the eigenvalues of one or two sample covariance matrices. In many applications of these methods, for example to high dimensional data, it is natural to consider alternative hypotheses which are a low rank departure from the null hypothesis. For rank one alternatives, this note provides a representation for the joint eigenvalue density in terms of a single contour integral. This will be of use for deriving approximate distributions for likelihood ratios and 'linear' statistics used in testing.
多元分析的经典方法基于一个或两个样本协方差矩阵的特征值。在这些方法的许多应用中,例如对于高维数据,考虑与原假设存在低秩偏离的备择假设是很自然的。对于秩为一的备择假设,本笔记提供了一种用单个围道积分表示联合特征值密度的方法。这将有助于推导用于检验的似然比和“线性”统计量的近似分布。