Suppr超能文献

典范相关分析的置换推断。

Permutation inference for canonical correlation analysis.

机构信息

National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD, USA.

Methodology and Data Analysis, Department of Psychology, University of Geneva, Switzerland.

出版信息

Neuroimage. 2020 Oct 15;220:117065. doi: 10.1016/j.neuroimage.2020.117065. Epub 2020 Jun 27.

Abstract

Canonical correlation analysis (CCA) has become a key tool for population neuroimaging, allowing investigation of associations between many imaging and non-imaging measurements. As age, sex and other variables are often a source of variability not of direct interest, previous work has used CCA on residuals from a model that removes these effects, then proceeded directly to permutation inference. We show that a simple permutation test, as typically used to identify significant modes of shared variation on such data adjusted for nuisance variables, produces inflated error rates. The reason is that residualisation introduces dependencies among the observations that violate the exchangeability assumption. Even in the absence of nuisance variables, however, a simple permutation test for CCA also leads to excess error rates for all canonical correlations other than the first. The reason is that a simple permutation scheme does not ignore the variability already explained by previous canonical variables. Here we propose solutions for both problems: in the case of nuisance variables, we show that transforming the residuals to a lower dimensional basis where exchangeability holds results in a valid permutation test; for more general cases, with or without nuisance variables, we propose estimating the canonical correlations in a stepwise manner, removing at each iteration the variance already explained, while dealing with different number of variables in both sides. We also discuss how to address the multiplicity of tests, proposing an admissible test that is not conservative, and provide a complete algorithm for permutation inference for CCA.

摘要

典型相关分析(CCA)已成为群体神经影像学的重要工具,可用于研究许多影像学和非影像学测量之间的关联。由于年龄、性别和其他变量通常是变异的来源,但不是直接感兴趣的因素,因此之前的工作使用 CCA 对从去除这些影响的模型中得到的残差进行分析,然后直接进行置换检验。我们表明,简单的置换检验,通常用于识别经过调整后的干扰变量的此类数据中共享变化的显著模式,会产生过高的错误率。原因是残差化会导致观察之间的依赖性,这违反了可交换性假设。然而,即使没有干扰变量,CCA 的简单置换检验也会导致除第一个以外的所有典型相关性的错误率过高。原因是简单的置换方案没有忽略之前典型变量已经解释的变异性。在这里,我们针对这两个问题提出了解决方案:在有干扰变量的情况下,我们表明,将残差转换为保持可交换性的较低维基础可以得到有效的置换检验;对于更一般的情况,无论是否有干扰变量,我们建议逐步估计典型相关性,在每次迭代中去除已经解释的方差,同时处理两侧变量数量不同的情况。我们还讨论了如何处理检验的多重性,提出了一种非保守的可接受检验,并为 CCA 的置换检验提供了完整的算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5312/7573815/e7e7f35c7eb3/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验