Wang Jiebiao, Liu Qianying, Pierce Brandon L, Huo Dezheng, Olopade Olufunmilayo I, Ahsan Habibul, Chen Lin S
Department of Public Health Sciences, The University of Chicago, Chicago, Illinois, United States of America.
Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America.
Genet Epidemiol. 2018 Jul;42(5):434-446. doi: 10.1002/gepi.22115. Epub 2018 Feb 11.
There is a growing recognition that gene-environment interaction (G × E) plays a pivotal role in the development and progression of complex diseases. Despite a wealth of genetic data on various complex diseases/traits generated from association and sequencing studies, detecting G × E via genome-wide analysis remains challenging due to power issues. In genome-wide G × E studies, a common strategy to improve power is to first conduct a filtering test and retain only the genetic variants that pass the filtering step for subsequent G × E analyses. Two-stage, multistage, and unified tests have been proposed to jointly consider the filtering statistics in G × E tests. However, such G × E tests based on data from a single study may still be underpowered. Meanwhile, large-scale consortia have been formed to borrow strength across studies and populations. In this work, motivated by existing single-study G × E tests with filtering and the needs for meta-analysis G × E approaches based on consortia data, we propose a meta-analysis framework for detecting gene-based G × E effects, and introduce meta-analysis-based filtering statistics in the gene-level G × E tests. Simulations demonstrate the advantages of the proposed method-the ofGEM test. We apply the proposed tests to existing data from two breast cancer consortia to identify the genes harboring genetic variants with age-dependent penetrance (i.e., gene-age interaction effects). We develop an R software package ofGEM for the proposed meta-analysis tests.
人们越来越认识到基因-环境相互作用(G×E)在复杂疾病的发生和发展中起着关键作用。尽管通过关联研究和测序研究产生了大量关于各种复杂疾病/性状的遗传数据,但由于功效问题,通过全基因组分析检测G×E仍然具有挑战性。在全基因组G×E研究中,提高功效的一种常见策略是首先进行过滤测试,只保留通过过滤步骤的遗传变异用于后续的G×E分析。已经提出了两阶段、多阶段和统一测试,以便在G×E测试中联合考虑过滤统计量。然而,基于单个研究数据的此类G×E测试可能仍然功效不足。与此同时,已经形成了大规模的联盟,以在不同研究和人群中借势。在这项工作中,受现有的带过滤的单研究G×E测试以及基于联盟数据的荟萃分析G×E方法需求的启发,我们提出了一个用于检测基于基因的G×E效应的荟萃分析框架,并在基因水平的G×E测试中引入基于荟萃分析的过滤统计量。模拟证明了所提出方法——ofGEM测试的优势。我们将所提出的测试应用于来自两个乳腺癌联盟的现有数据,以识别携带具有年龄依赖性外显率的遗传变异的基因(即基因-年龄相互作用效应)。我们为所提出的荟萃分析测试开发了一个R软件包ofGEM。