Suppr超能文献

在涉及多个遗传因素和多个环境因素的关联研究中进行完整的效应概况评估。

Complete effect-profile assessment in association studies with multiple genetic and multiple environmental factors.

作者信息

Wang Zhi, Maity Arnab, Luo Yiwen, Neely Megan L, Tzeng Jung-Ying

机构信息

Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, United States of America.

出版信息

Genet Epidemiol. 2015 Feb;39(2):122-33. doi: 10.1002/gepi.21877. Epub 2014 Dec 23.

Abstract

Studying complex diseases in the post genome-wide association studies (GWAS) era has led to developing methods that consider factor-sets rather than individual genetic/environmental factors (i.e., Multi-G-Multi-E studies), and mining for potential gene-environment (G×E) interactions has proven to be an invaluable aid in both discovery and deciphering underlying biological mechanisms. Current approaches for examining effect profiles in Multi-G-Multi-E analyses are either underpowered due to large degrees of freedom, ill-suited for detecting G×E interactions due to imprecise modeling of the G and E effects, or lack of capacity for modeling interactions between two factor-sets (e.g., existing methods focus primarily on a single E factor). In this work, we illustrate the issues encountered in constructing kernels for investigating interactions between two factor-sets, and propose a simple yet intuitive solution to construct the G×E kernel that retains the ease-of-interpretation of classic regression. We also construct a series of kernel machine (KM) score tests to evaluate the complete effect profile (i.e., the G, E, and G×E effects individually or in combination). We show, via simulations and a data application, that the proposed KM methods outperform the classic and PC regressions across a range of scenarios, including varying effect size, effect structure, and interaction complexity. The largest power gain was observed when the underlying effect structure involved complex G×E interactions; however, the proposed methods have consistent, powerful performance when the effect profile is simple or complex, suggesting that the proposed method could be a useful tool for exploratory or confirmatory G×E analysis.

摘要

在后全基因组关联研究(GWAS)时代,对复杂疾病的研究促使人们开发出考虑因素集而非单个遗传/环境因素的方法(即多基因-多环境研究),并且挖掘潜在的基因-环境(G×E)相互作用已被证明在发现和解读潜在生物学机制方面具有不可估量的帮助。目前在多基因-多环境分析中检查效应概况的方法,要么因自由度大而功效不足,要么由于对G和E效应的建模不精确而不适用于检测G×E相互作用,要么缺乏对两个因素集之间相互作用进行建模的能力(例如,现有方法主要关注单个E因素)。在这项工作中,我们阐述了在构建核以研究两个因素集之间的相互作用时遇到的问题,并提出了一种简单直观的解决方案来构建G×E核,该核保留了经典回归易于解释的特点。我们还构建了一系列核机器(KM)得分检验来评估完整的效应概况(即G、E和G×E效应单独或组合的情况)。我们通过模拟和数据应用表明,在一系列场景中,包括不同的效应大小、效应结构和相互作用复杂性,所提出的KM方法优于经典回归和主成分回归。当潜在效应结构涉及复杂的G×E相互作用时,观察到最大的功效增益;然而,当效应概况简单或复杂时,所提出的方法都具有一致且强大的性能,这表明所提出的方法可能是探索性或验证性G×E分析的有用工具。

相似文献

1
Complete effect-profile assessment in association studies with multiple genetic and multiple environmental factors.
Genet Epidemiol. 2015 Feb;39(2):122-33. doi: 10.1002/gepi.21877. Epub 2014 Dec 23.
2
Using Genetic Marginal Effects to Study Gene-Environment Interactions with GWAS Data.
Behav Genet. 2021 May;51(3):358-373. doi: 10.1007/s10519-021-10058-8. Epub 2021 Apr 26.
3
Update on the State of the Science for Analytical Methods for Gene-Environment Interactions.
Am J Epidemiol. 2017 Oct 1;186(7):762-770. doi: 10.1093/aje/kwx228.
4
Smooth-threshold multivariate genetic prediction incorporating gene-environment interactions.
G3 (Bethesda). 2021 Dec 8;11(12). doi: 10.1093/g3journal/jkab278.
5
Assessing gene-environment interactions for common and rare variants with binary traits using gene-trait similarity regression.
Genetics. 2015 Mar;199(3):695-710. doi: 10.1534/genetics.114.171686. Epub 2015 Jan 12.
6
A unified powerful set-based test for sequencing data analysis of GxE interactions.
Biostatistics. 2017 Jan;18(1):119-131. doi: 10.1093/biostatistics/kxw034. Epub 2016 Jul 28.
7
A Varying Coefficient Model to Jointly Test Genetic and Gene-Environment Interaction Effects.
Behav Genet. 2023 Jul;53(4):374-382. doi: 10.1007/s10519-022-10131-w. Epub 2023 Jan 9.
9
Genomic-Enabled Prediction Kernel Models with Random Intercepts for Multi-environment Trials.
G3 (Bethesda). 2018 Mar 28;8(4):1347-1365. doi: 10.1534/g3.117.300454.
10
A meta-analysis approach with filtering for identifying gene-level gene-environment interactions.
Genet Epidemiol. 2018 Jul;42(5):434-446. doi: 10.1002/gepi.22115. Epub 2018 Feb 11.

引用本文的文献

1
SEAGLE: A Scalable Exact Algorithm for Large-Scale Set-Based Gene-Environment Interaction Tests in Biobank Data.
Front Genet. 2021 Nov 2;12:710055. doi: 10.3389/fgene.2021.710055. eCollection 2021.
2
Small Sample Kernel Association Tests for Human Genetic and Microbiome Association Studies.
Genet Epidemiol. 2016 Jan;40(1):5-19. doi: 10.1002/gepi.21934. Epub 2015 Dec 7.
3
A Fast Multiple-Kernel Method With Applications to Detect Gene-Environment Interaction.
Genet Epidemiol. 2015 Sep;39(6):456-68. doi: 10.1002/gepi.21909. Epub 2015 Jul 3.
4
Module-based association analysis for omics data with network structure.
PLoS One. 2015 Mar 30;10(3):e0122309. doi: 10.1371/journal.pone.0122309. eCollection 2015.

本文引用的文献

1
Analysis of gene-gene interactions using gene-trait similarity regression.
Hum Hered. 2014;78(1):17-26. doi: 10.1159/000360161. Epub 2014 Jun 21.
2
Gene-environment interactions in cancer epidemiology: a National Cancer Institute Think Tank report.
Genet Epidemiol. 2013 Nov;37(7):643-57. doi: 10.1002/gepi.21756. Epub 2013 Oct 5.
3
A kernel regression approach to gene-gene interaction detection for case-control studies.
Genet Epidemiol. 2013 Nov;37(7):695-703. doi: 10.1002/gepi.21749. Epub 2013 Jul 19.
4
SBERIA: set-based gene-environment interaction test for rare and common variants in complex diseases.
Genet Epidemiol. 2013 Jul;37(5):452-64. doi: 10.1002/gepi.21735. Epub 2013 May 29.
6
Kernel machine SNP-set testing under multiple candidate kernels.
Genet Epidemiol. 2013 Apr;37(3):267-75. doi: 10.1002/gepi.21715. Epub 2013 Mar 7.
7
Test for interactions between a genetic marker set and environment in generalized linear models.
Biostatistics. 2013 Sep;14(4):667-81. doi: 10.1093/biostatistics/kxt006. Epub 2013 Mar 5.
8
A genome-wide association study for serum bilirubin levels and gene-environment interaction in a Chinese population.
Genet Epidemiol. 2013 Apr;37(3):293-300. doi: 10.1002/gepi.21711. Epub 2013 Jan 31.
9
Systematic identification of interaction effects between genome- and environment-wide associations in type 2 diabetes mellitus.
Hum Genet. 2013 May;132(5):495-508. doi: 10.1007/s00439-012-1258-z. Epub 2013 Jan 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验